精英家教網 > 高中數學 > 題目詳情
設f(x)的定義域為[0,2],則函數f(x2)的定義域是( 。
分析:根據函數f(x)的定義域,解不等式0≤x2≤2,求出的解集即為函數y=f(x2)的定義域.
解答:解:∵函數y=f(x)的定義域為[0,2],
∴函數y=f(x2)滿足x2∈[0,2],
解不等式0≤x2≤2,得-
2
≤x≤
2

即函數y=f(x2)的定義域是[-
2
,
2
]
故選:A
點評:本題給出f(x)的定義域,求函數f(x2)的定義域.考查了函數的定義域及其求法和不等式的解法等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設f(x)的定義域為(0,+∞),f(x)的導函數為f′(x),且對任意正數x均有f′(x)>
f(x)
x
,
(Ⅰ)判斷函數F(x)=
f(x)
x
在(0,+∞)上的單調性;
(Ⅱ)設x1,x2∈(0,+∞),比較f(x1)+f(x2)與f(x1+x2)的大小,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

18、設F(x)的定義域為R,且滿足F(ab)=F(a)F(b),其中F(2)=8.定義在R上的函數f(x)滿足下述條件:①f(x)是奇函數;②f(x+2)是偶函數;③在[-2,2]上,f(x)=F(x)
(1)設G(x)=f(x+4),判斷G(x)的奇偶性并證明;(2)解關于x的不等式:f(x)≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)的定義域為D,若f(x)滿足下面兩個條件,則稱f(x)為閉函數,[a,b]為函數f(x)的閉區(qū)間.①f(x)在D內是單調函數;②存在[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b].
(1)寫出f(x)=x3的一個閉區(qū)間;
(2)若f(x)=
13
x3-k為閉函數求k取值范圍?

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)的定義域為D,f(x)滿足下面兩個條件,則稱f(x)為閉函數.
①f(x)在D內是單調函數;
②存在[a,b]⊆D,f(x)在[a,b]上的值域為[a,b].
如果f(x)=
2x+1
+k
為閉函數,那么k的取值范圍是
-1<k≤-
1
2
-1<k≤-
1
2

查看答案和解析>>

同步練習冊答案