【題目】為了解某校學生參加社區(qū)服務的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為的樣本,得到一周參加社區(qū)服務的時間的統(tǒng)計數(shù)據(jù)好下表:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求,;
(Ⅱ)能否有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關?
(Ⅲ)以樣本中學生參加社區(qū)服務時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調(diào)查6名學生,試估計6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【答案】(Ⅰ),(Ⅱ)沒有95%把握(Ⅲ)4人
【解析】
(Ⅰ)由已知得該校女生人數(shù),利用分層抽樣的原則列等式得m值,由列聯(lián)表中的數(shù)據(jù)可得n值;(Ⅱ)由列聯(lián)表計算的值,對照臨界值,即可得出結論;(Ⅲ)由列聯(lián)表中的數(shù)據(jù)可得學生一周參加社區(qū)服務時間超過1小時的概率,從而得到6名學生中一周參加社區(qū)服務時間超過1小時的人數(shù).
解:(Ⅰ)由已知,該校有女生400人,故,得
從而.
(Ⅱ)作出列聯(lián)表如下:
超過1小時的人數(shù) | 不超過1小時的人數(shù) | 合計 | |
男 | 20 | 8 | 28 |
女 | 12 | 8 | 20 |
合計 | 32 | 16 | 48 |
.
所以沒有95%的把握認為該校學生一周參加社區(qū)服務時間是否超過1小時與性別有關.
(Ⅲ)根據(jù)以上數(shù)據(jù),學生一周參加社區(qū)服務時間超過1小時的概率,
故估計這6名學生一周參加社區(qū)服務時間超過1小時的人數(shù)是4人.
科目:高中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線的焦點重合,且橢圓短軸的兩個端點與點構成正三角形.
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同的兩點,試問在軸上是否存在定點,使恒為定值?若存在,求出的坐標,并求出這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了紀念五四運動100周年和建團97周年,某校團委開展“青春心向黨,建功新時代”知識問答競賽.在小組賽中,甲乙丙3人進行擂臺賽,每局2人進行比賽,另1人當裁判,每一局的輸方擔任下局的裁判,由原來裁判向勝者挑戰(zhàn),甲乙丙3人實力相當.
(1)若第1局是由甲擔任裁判,求第4局仍是甲擔任裁判的概率;
(2)甲乙丙3人進行的擂臺賽結束后,經(jīng)統(tǒng)計,甲共參賽了6局,乙共參賽了5局而丙共擔任了2局裁判.則甲乙丙3人進行的擂臺賽共進行了多少局?若從小組賽中,甲乙丙比賽的所有場次中任取2場,則均是由甲擔任裁判的概率是多少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義函數(shù)(其中為自變量,為常數(shù)).
(Ⅰ)若當時,函數(shù)的最小值為-1,求實數(shù)的值;
(Ⅱ)設全集,已知集合,,若集合,滿足,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com