過點(diǎn)M(2,4)作兩條互相垂直的直線,分別交x軸y軸的正半軸于A、B,若四邊形OAMB的面積被直線AB平分,求直線AB的方程.
由題意,設(shè)A(a,0)、B(0,b).則直線AB方程為
x
a
+
y
b
=1(a>0,b>0)
∵M(jìn)A⊥MB,∴
4-0
2-a
×
4-b
2-0
=-1,化簡(jiǎn)得a=10-2b.
∵a>0,∴0<b<5.直線AB的一般式方程為bx+ay-ab=0
∴點(diǎn)M(2,4)到直線AB的距離為d1=
|2b+4a-ab|
a2+b2

又∵O點(diǎn)到直線AB的距離為d2=
|-ab|
a2+b2
,∵四邊形OAMB的面積被直線AB平分,
∴d1=d2,∴2b+4a-ab=±ab.
又∵a=10-2b.
解得
a=2
b=4
a=5
b=
5
2
,
∴所求直線為2x+y-4=0或x+2y-5=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(2,4)作兩條互相垂直的直線,分別交x軸y軸的正半軸于A、B,若四邊形OAMB的面積被直線AB平分,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)過點(diǎn)P(2,4)作兩條互相垂直的直線l1、l2,若l1交x軸于A點(diǎn),l2交y軸于B點(diǎn),求線段AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)M(2,4)作兩條互相垂直的直線,分別交x、y軸的正半軸于點(diǎn)A、B,若四邊形OAMB的面積被直線AB平分,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省蕪湖市高二(上)模塊測(cè)評(píng)數(shù)學(xué)試卷A卷(必修2)(解析版) 題型:解答題

過點(diǎn)M(2,4)作兩條互相垂直的直線,分別交x軸y軸的正半軸于A、B,若四邊形OAMB的面積被直線AB平分,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案