【題目】如圖程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為16,20,則輸出的a=( )
A.0
B.2
C.4
D.14
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.01則輸出n的值( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一塊半徑為2的半圓形紙板切割成等腰梯形的形狀,下底AB是半圓的直徑,上底CD的端點(diǎn)在半圓上,則所得梯形的最大面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=cos(2x+ )的圖象沿x軸向右平移φ(φ>0)個(gè)單位,得到一個(gè)偶函數(shù)的圖象,則φ的一個(gè)可能取值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間商場為活躍節(jié)日氣氛,特舉行“購物有獎(jiǎng)”抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為 ,每次中獎(jiǎng)可以獲得20元購物代金券,方案乙的中獎(jiǎng)率為 ,每次中獎(jiǎng)可以獲得30元購物代金券,未中獎(jiǎng)則不獲得購物代金券,每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,已知小明通過購物獲得了2次抽獎(jiǎng)機(jī)會(huì).
(1)若小明選擇方案甲、乙各抽獎(jiǎng)一次,記他累計(jì)獲得的購物代金券面額之和為X,求X≤30的概率;
(2)設(shè)小明兩次抽獎(jiǎng)都選擇方案甲或都選擇方案乙,且都選擇方案乙時(shí),已算得,累計(jì)獲得的購物代金券面額之和X1的數(shù)學(xué)期望E(X1)=24,問:小明選擇這兩種方案中的何種方案抽獎(jiǎng),累計(jì)獲得的購物代金券面額之和的數(shù)學(xué)期望較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD為矩形, 為BC的中點(diǎn),連接AE,BD,交點(diǎn)H,PH⊥平面ABCD,M為PD的中點(diǎn).
(1)求證:平面MAE⊥平面PBD;
(2)設(shè)PE=1,求二面角M﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC= AD=1,CD= .
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C為30°,設(shè)PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知右焦點(diǎn)為F2(c,0)的橢圓C: + =1(a>b>0)過點(diǎn)(1, ),且橢圓C關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過點(diǎn)( ,0)作直線l與橢圓C交于E,F(xiàn)兩點(diǎn),線段EF的中點(diǎn)為M,點(diǎn)A是橢圓C的右頂點(diǎn),求直線MA的斜率k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com