已知正四棱柱ABCD—A1B1C1D1的底面邊長(zhǎng)AB=6,側(cè)棱長(zhǎng),它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是球O的球面上任意一點(diǎn),則有以下結(jié)論:

①PE長(zhǎng)的最大值是9;

②三棱錐P—EBC的最大值是[]

③存在過(guò)點(diǎn)E的平面,截球O的截面面積是;

④三棱錐P—AEC1體積的最大值是20。

其中正確結(jié)論的是           。(寫出所有正確結(jié)論的序號(hào))

 

【答案】

(1)(4)

【解析】解:(1)先求出球的半徑,然后求PE的長(zhǎng)+半徑;

(2)P到平面EBC的距離+半徑就是P到平面EBC的距離最大值;

(4)三棱錐P-AEC1體積的表達(dá)式,再求最大值;大圓和小圓的面積可以判斷(3)的正確性.即為

由題意可知球心在體對(duì)角線的中點(diǎn),直徑為

半徑是5,那么PE長(zhǎng)的最大值是5+ 正確

點(diǎn)P到命題 距離的最大值為5+,因此體積表示不正確。

球的大圓面積是25π,過(guò)E與球心連線垂直的平面是小圓,面積為9π,因而(3)是錯(cuò)誤的.

三棱錐P-AEC1體積的最大值是V= S△AEC1•h= × ×3×8×5=20(h最大是半徑)正確.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,點(diǎn)E在棱AA1上,A1C∥平面EBD,截面EBD的面積為
2
2

(1)A1C與底面ABCD所成角的大小;
(2)若AC與BD的交點(diǎn)為M,點(diǎn)T在CC1上,且MT⊥BE,求MT的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱柱ABCD-A1B1C1D1的頂點(diǎn)坐標(biāo)分別為A(0,0,0),B(2,0,O),D(0,2,0),A1(0,0,5),則C1的坐標(biāo)為
(2,2,5)
(2,2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱柱ABCD-A1B1C1D1的底面ABCD邊長(zhǎng)為1,高AA1=
2
,它的八個(gè)頂點(diǎn)都在同一球面上,那么球的半徑是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正四棱柱ABCD-A1B1C1D1與它的側(cè)視圖(或稱左視圖),E是DD1上一點(diǎn),AE⊥B1C.
(1)求證AE⊥平面B1CD;
(2)求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•廣州模擬)已知正四棱柱ABCD-A1B1C1D1,AB=BC=1,AA1=2,點(diǎn)E為CC1的中點(diǎn),點(diǎn)F為BD1的中點(diǎn).
(Ⅰ)證明:EF⊥BD1;
(Ⅱ)求四面體D1-BDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案