【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當a=﹣2時,求不等式f(x)<g(x)的解集;
(2)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.
【答案】
(1)解:當a=﹣2時,求不等式f(x)<g(x)化為|2x﹣1|+|2x﹣2|﹣x﹣3<0.
設y=|2x﹣1|+|2x﹣2|﹣x﹣3,則 y= ,它的圖象如圖所示:
結(jié)合圖象可得,y<0的解集為(0,2),故原不等式的解集為(0,2).
(2)解:設a>﹣1,且當 時,f(x)=1+a,不等式化為 1+a≤x+3,故 x≥a﹣2對 都成立.
故﹣ ≥a﹣2,解得 a≤ ,故a的取值范圍為(﹣1, ].
【解析】(1)當a=﹣2時,求不等式f(x)<g(x)化為|2x﹣1|+|2x﹣2|﹣x﹣3<0.設y=|2x﹣1|+|2x﹣2|﹣x﹣3,畫出函數(shù)y的圖象,數(shù)形結(jié)合可得結(jié)論.(2)不等式化即 1+a≤x+3,故 x≥a﹣2對 都成立.故﹣ ≥a﹣2,由此解得a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓M:x2+y2+ay=0(a>0),直線l:x-7y-2=0,且直線l與圓M相交于不同的兩點A,B.
(1)若a=4,求弦AB的長;
(2)設直線OA,OB的斜率分別為k1,k2,若k1+k2=,求圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=.
(Ⅰ)若f(x)是奇函數(shù),求實數(shù)a的值;
(Ⅱ)當0<x≤1時,|f(2x)-f(x)|≥1恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構(gòu)對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
試根據(jù)求出的線性回歸方程,預測記憶力為9的同學的判斷力.
相關公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中實數(shù)a≠0.
(1)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當函數(shù)y=f(x)與y=g(x)的圖象只有一個公共點且g(x)存在最小值時,記g(x)的最小值為h(a),求h(a)的值域;
(3)若f(x)與g(x)在區(qū)間(a,a+2)內(nèi)均為增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,如圖,在直二面角中,四邊形是邊長為的正方形,,且.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段(不包含端點)上是否存在點,使得與平面所成的角為;若存在,寫出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某鮮奶店每天以每瓶3元的價格從牧場購進若干瓶鮮牛奶,然后以每瓶7元的價格出售.如果當天賣不完,剩下的鮮牛奶作垃圾處理.
(1)若鮮奶店一天購進30瓶鮮牛奶,求當天的利潤(單位:元)關于當天需求量(單位:瓶,)的函數(shù)解析式;
(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數(shù)為5);
(i)若該鮮奶店一天購進30瓶鮮牛奶,求這100天的日利潤(單位:元)的平均數(shù);
(ii) 若該鮮奶店一天購進30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于100元的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com