(本小題滿分12分)

某市為了對學生的數(shù)理(數(shù)學與物理)學習能力進行分析,從10000名學生中隨機抽出100位學生的數(shù)理綜合學習能力等級分數(shù)(6分制)作為樣本,分數(shù)頻數(shù)分布如下表:

等級得分

人數(shù)

3

17

30

30

17

3

(Ⅰ)如果以能力等級分數(shù)大于4分作為良好的標準,從樣本中任意抽。裁麑W生,求恰有1名學生為良好的概率;

(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為1.5)作為代表:

(ⅰ)據(jù)此,計算這100名學生數(shù)理學習能力等級分數(shù)的期望及標準差(精確到0.1);

(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學生中數(shù)理學習能力等級在范圍內(nèi)的人數(shù) .

(Ⅲ)從這10000名學生中任意抽取5名同學,

他們數(shù)學與物理單科學習能力等級分

數(shù)如下表:

(。┱埉嫵錾媳頂(shù)據(jù)的散點圖;

(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(附參考數(shù)據(jù):

 

 

【答案】

解:(Ⅰ)樣本中,學生為良好的人數(shù)為20人.故從樣本中任意抽。裁麑W生,則僅有1名學生為良好的概率為

-------------2分

(Ⅱ) (ⅰ)總體數(shù)據(jù)的期望約為:=0.5×0.03+1.5×0.17+2.5×0.30+3.5×0.30+4.5×0.17+5.5×0.03=3.0-------------4分

標準差=

1.1---------------6分

(ⅱ)由于=3, 1.1

當x時,即x(-,+)

故數(shù)學學習能力等級分數(shù)在范圍中的概率0.6826.

數(shù)學學習能力等級在范圍中的學生的人數(shù)約為6826人.-----------------8分

(Ⅲ)

(。⿺(shù)據(jù)的散點圖如下圖:

-------------9分

(ⅱ)設(shè)線性回歸方程為,則

方法一: ==1.1  =4-1.1×4=-0.4

故回歸直線方程為-----12分

方法二:

        

      ∴時,

取得最小值10b-22b+12.5

即,∴時f(a,b)取得最小值;

所以線性回歸方程為.---------12分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案