【題目】已知線段AB的兩個端點A、B分別在x軸和y軸上滑動,且∣AB∣=2.
(1)求線段AB的中點P的軌跡C的方程;
(2)求過點M(1,2)且和軌跡C相切的直線方程.
【答案】(1)x2+y2=1(2) x=1或3x-4y+5=0
【解析】本題考查點軌跡方程的求法,兩點間的距離公式的應用,體現(xiàn)了分類討論的數(shù)學思想,注意考慮切線的斜率不存在的情況,這是易錯點
(1)設P(x,y),由|AB|=2,且P為AB的中點,可得|OP|=1,由兩點間的距離公式求得點P的軌跡方程.
(2)①當切線的斜率不存在時,由條件易得x=1符合條件;②當切線的斜率存在時,設出切線方程,由切線的性質可解得斜率k的值,用點斜式求得切線方程.
解: (1) 方法一:設P(x , y ),
∵∣AB∣=2,且P為AB的中點,
∴∣OP∣=1 ……………………2分
∴點P的軌跡方程為x2+y2=1. ……………………4分
方法二:設P(x , y ), ∵P為AB的中點,
∴A (2x , 0 ), B(0 , 2y ), ………………………2分
又∵∣AB∣=2 ∴(2x)2+(2y)2=2
化簡得點P的軌跡C的方程為x2+y2=1. ……………4分
(2) ①當切線的斜率不存在時,切線方程為x=1,
由條件易得 x=1符合條件; ………………5分
②當切線的斜率存在時,設切線方程為 y-2=k(x-1) 即kx-y+2-k=0
由得k=, ∴切線方程為y-2= (x-1)
即 3x-4y+5=0
綜上,過點M(1,2)且和軌跡C相切的直線方程為:
x=1 或3x-4y+5=0 ……………………8分
科目:高中數(shù)學 來源: 題型:
【題目】已知右焦點為F(c,0)的橢圓M: =1(a>b>0)過點 ,且橢圓M關于直線x=c對稱的圖形過坐標原點.
(1)求橢圓M的方程;
(2)過點(4,0)且不垂直于y軸的直線與橢圓M交于P,Q兩點,點Q關于x軸的對稱原點為E,證明:直線PE與x軸的交點為F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.若使租賃公司的月收益最大,每輛車的月租金應該定為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是圓柱的母線, 是的直徑, 是底面圓周上異于的任意一點, , .
(1)求證:
(2)當三棱錐的體積最大時,求與平面所成角的大;
(3)上是否存在一點,使二面角的平面角為45°?若存在,求出此時的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 的離心率為e,經過第一、三象限的漸近線的斜率為k,且e≥ k.
(1)求m的取值范圍;
(2)設條件p:e≥ k;條件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()
(1)若,用“五點法”在給定的坐標系中,畫出函數(shù)在[0,π]上的圖象.
(2)若偶函數(shù),求
(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數(shù)的圖象,求在的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, , , , 且, 分別為的中點.
(1)求證: 平面;
(2)求證: 平面;
(3)若二面角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】田忌和齊王賽馬是歷史上有名的故事,設齊王的三匹馬分別為,田忌的三匹馬分別為 .三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示: .
(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;
(2)為了得到更大的獲勝概率,田忌預先派出探子到齊王處打探實情,得知齊王第一場必出上等馬,那么,田忌應怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com