如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線,PA=10,PB=5。
求:(1)⊙O的半徑;
(2)s1n∠BAP的值。
(1)7.5(2)
解析試題分析:(1)由題可知,利用切割線定理即可;(2)根據(jù)弦切角定理可知s1n∠BAP=s1n∠ACB,然后求出AB、BC的比值即可.
試題解析:(1)因?yàn)镻A為⊙O的切線,所以,
又由PA=10,PB=5,所以PC=20,BC=20-5=15 2分.
因?yàn)锽C為⊙O的直徑,所以⊙O的半徑為7.5. 4分
(2)∵PA為⊙O的切線,∴∠ACB=∠PAB, 5分
又由∠P=∠P, ∴△PAB∽△PCA,∴ 7分
設(shè)AB=k,AC="2k," ∵BC為⊙O的直徑,
∴AB⊥AC∴ 8分
∴s1n∠BAP=s1n∠ACB= 10分
考點(diǎn):平面幾何中圓的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在中,是的∠A的平分線,圓經(jīng)過(guò)點(diǎn)與切于點(diǎn),與相交于,連結(jié),.
(1)求證:; (2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在梯形ABCD中,點(diǎn)E、F分別在腰AB、CD上,EF∥AD,AE∶EB=m∶n.求證:(m+n)EF=mBC+nAD.你能由此推導(dǎo)出梯形的中位線公式嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形為邊長(zhǎng)為a的正方形,以D為圓心,DA為半徑的圓弧與以BC為直徑的圓O交于F,連接CF并延長(zhǎng)交AB于點(diǎn)E.
(1).求證:E為AB的中點(diǎn);
(2).求線段FB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是⊙的直徑, 是⊙的切線,與的延長(zhǎng)線交于點(diǎn),為切點(diǎn).若,,的平分線與和⊙分別交于點(diǎn)、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長(zhǎng)線交直線CD于點(diǎn)D,E、F分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B、E、F、C四點(diǎn)共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過(guò)B、E、F、C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,圓內(nèi)的兩條弦AB、CD相交于圓內(nèi)一點(diǎn)P,已知PA=PB=4,PC=PD.求CD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線AB過(guò)圓心O,交于F(不與B重合),直線與相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC.
求證:(1);(2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com