如下圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
(1)先證明AC⊥平面BCC1B1,再根據(jù)性質(zhì)即可證明
(2)先證明DE∥AC1,再根據(jù)線面平行的判定定理證明
(3)
【解析】
試題分析:(1)在直三棱柱ABC-A1B1C1中,底面三邊長AC=3,BC=4,AB=5,
∴AC⊥BC.又∵C1C⊥AC.∴AC⊥平面BCC1B1.
∵BC1?平面BCC1B,∴AC⊥BC1.
(2)設(shè)CB1與C1B的交點為E,連接DE,又四邊形BCC1B1為正方形.
∵D是AB的中點,E是BC1的中點,∴DE∥AC1.
∵DE?平面CDB1,AC1?平面CDB1,
∴AC1∥平面CDB1.
(3)∵DE∥AC1,∴∠CED為AC1與B1C所成的角.
在△CED中,ED=AC1=,CD=AB=,CE=CB1=2,
∴cos∠CED==.
∴異面直線AC1與B1C所成角的余弦值為.
考點:本小題主要考查線線垂直、線面平行的判定和兩條異面直線所成的角的計算,考查學(xué)生的空間想象能力和運算求解能力.
點評:解決此類問題,要準確應(yīng)用相應(yīng)的判定定理和性質(zhì)定理并注意相互轉(zhuǎn)化,求解兩條異面直線的夾角問題時,要注意夾角的取值范圍.
科目:高中數(shù)學(xué) 來源:必修二訓(xùn)練數(shù)學(xué)北師版 北師版 題型:022
如下圖所示,在直三棱柱ABC-A1B1C1中,AB=BC=,BB1=2,∠ABC=90°,E、F分別為AA1、C1B1的中點,沿棱柱的表面從E點到F點的最短路徑的長度為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省費縣2009屆高三上學(xué)期期中考試(數(shù)學(xué)文) 題型:044
如下圖所示:在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東蒼山期末文)(12分)
如下圖所示:在直三棱柱ABC―A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點。
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com