((本小題滿分12分)
已知幾何體的三視圖如圖所示,其中側(cè)視圖和俯視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.求:
(1)異面直線與所成角的余弦值;
(2)二面角的正弦值;
(3)此幾何體的體積的大小.
解:方法一(1)取EC的中點(diǎn)是F,連結(jié)BF,
則BF//DE,∴∠FBA或其補(bǔ)角即為異面直線DE與AB所成的角.
在△BAF中,AB=,BF=AF=.∴.
∴異面直線DE與AB所成的角的余弦值為.………………4分
(2)AC⊥平面BCE,過C作CG⊥DE交DE于G,連AG.
可得DE⊥平面ACG,從而AG⊥DE
∴∠AGC為二面角A-ED-B的平面角.
在△ACG中,∠ACG=90°,AC=4,CG=
∴.∴.
∴二面角A—ED—B的正弦值為.………………8分
(3)
∴幾何體的體積V為16.………………12分
方法二:(坐標(biāo)法)(1)以C為原點(diǎn),以CA,CB,CE所在直線為x,y,z軸建立空間直角坐標(biāo)系.
則A(4,0,0),B(0,4,0),D(0,4,2),E(0,0,4)
,∴
∴異面直線DE與AB所成的角的余弦值為.…………4分
(2)平面BDE的一個(gè)法向量為,
設(shè)平面ADE的一個(gè)法向量為,
∴
從而,令,
則,
∴二面角A-ED-B的的正弦值為.………………8分
(3),∴幾何體的體積V為16.………………12分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點(diǎn),現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知正方體ABCD-A1B1C1D1, O是底ABCD對角線的交點(diǎn)。
(2)A1C⊥面AB1D1;
(3)求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點(diǎn),又PB=BC,PA=AB。
(1)求證:PC⊥平面BDE;
(2)若點(diǎn)Q是線段PA上任一點(diǎn),判斷BD、DQ的位置關(guān)系,并證明你的結(jié)論;
(3)若AB=2,求三棱錐B-CED的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐的底面是邊長為1的菱形,,
E是CD的中點(diǎn),PA底面ABCD,。
(I)證明:平面PBE平面PAB;
(II)求二面角A—BE—P和的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(本小題滿分6分)
如圖是一個(gè)幾何體的三視圖(單位:cm)
(Ⅰ)畫出這個(gè)幾何體的直觀圖(不要求寫畫法);
(Ⅱ)求這個(gè)幾何體的表面積及體積;
(Ⅲ)設(shè)異面直線與所成的角為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如下的三個(gè)圖中,上面的是一個(gè)長方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:)
(Ⅰ)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;
(Ⅱ)按照給出的尺寸,求該多面體的體積;
(Ⅲ)在所給直觀圖中連結(jié),證明:∥面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com