已知圓錐母線長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)是母線的中點(diǎn),是底面圓的直徑,底面半徑與母線所成的角的大小等于

(1)當(dāng)時(shí),求異面直線所成的角;
(2)當(dāng)三棱錐的體積最大時(shí),求的值.
(1),(2).

試題分析:(1)求異面直線所成角,關(guān)鍵在平移,即將空間角轉(zhuǎn)化為平面角.利用中位線實(shí)現(xiàn)線線之間平移. 連,過,則等于異面直線所成的角或其補(bǔ)角.又,所以為異面直線OC與PB所成的角或其補(bǔ)角.明確角之后,只需在相應(yīng)三角形中求解即可.(2)因?yàn)槿忮F的高確定,所以要使得三棱錐的體積最大只要底面積的面積最大.而的兩邊確定為半徑,因此要使得的面積最大,只需兩半徑夾角的正弦值最大,也即為直角.
試題解析:解:(1) 連,過于點(diǎn),連

,.又
,等于異面直線所成的角或其補(bǔ)角.
.     5分
當(dāng)時(shí),
,
當(dāng)時(shí),,
綜上異面直線所成的角等于.      8分
(2)三棱錐的高為且長(zhǎng)為,要使得三棱錐的體積最大只要底面積的面積最大.而當(dāng)時(shí),的面積最大.    10分
,此時(shí),      12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,,分別是的中點(diǎn),且.

(1)求直線所成角的大。
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn),

(1).求證:D1E⊥A1D;
(2).在線段AB上是否存在點(diǎn)M,使二面角D1-MC-D的大小為?,若存在,求出AM的長(zhǎng),若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱的底面為等腰直角三角形,,,分別是的中點(diǎn)。求異面直線所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知四棱錐S-ABCD的所有棱長(zhǎng)都相等,E是SB的中點(diǎn),則AE,SD所成的角的正弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若正三棱柱的棱長(zhǎng)均相等,則與側(cè)面所成角的正切值為___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰直角三角形ABD中,∠BAD=90°,且等腰直角三角形ABD與等邊三角形CBD所在平面垂直,EBC的中點(diǎn),則AE與平面BCD所成角的大小為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果平面a外有兩點(diǎn)A,B,它們到平面a的距離都是a,則直線AB和平面a的位置關(guān)系一定是( 。
A.平行B.相交C.AB?aD.平行或相交

查看答案和解析>>

同步練習(xí)冊(cè)答案