已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則數(shù)學(xué)公式
(1)若a=-3,求出A中其它所有元素;
(2)0是不是集合A中的元素?請(qǐng)你設(shè)計(jì)一個(gè)實(shí)數(shù)a∈A,再求出A中的所有元素?
(3)根據(jù)(1)(2),你能得出什么結(jié)論.

解:(1)由a=-3,則,
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/442386.png' />,所以,
,所以,
2∈R,所以,以下循環(huán)出現(xiàn),
所以a=-3時(shí),集合A中其它所有元素為:,,2;
(2)若0∈A,則,繼續(xù)把1代入,該式無意義,所以0不是集合A的元素,
取a=3,則,
-2∈R,所以,
,所以,
,則,
以下循環(huán),所以3是集合A中的元素;
(3)由(1)(2)得出:集合A中有四個(gè)元素,其中每兩個(gè)元素互為負(fù)倒數(shù),且四個(gè)元素的積為1.
分析:(1)把a(bǔ)=-3代入,得出數(shù)值后再代入該式,直至數(shù)字重復(fù)出現(xiàn);
(2)把0代入后驗(yàn)證,結(jié)果出現(xiàn)1,而1在分母無意義,第二步可以嘗試一個(gè)盡量與1、-1、1無關(guān)的實(shí)數(shù)驗(yàn)證;
(3)分析(1)(2)中的四個(gè)值得特點(diǎn)得出結(jié)論.
點(diǎn)評(píng):本題考查了元素與集合關(guān)系的判斷,是一個(gè)探究性與規(guī)律性的問題,解答的關(guān)鍵是計(jì)算仔細(xì),分析特點(diǎn)找規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則
1+a1-a
∈A

(1)若a=2,求出A中其他所有元素;
(2)0是不是集合A中的元素?請(qǐng)你設(shè)計(jì)一個(gè)實(shí)數(shù)a∈A,再求出A中所有元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則
1+a1-a
∈A.
(1)若a=2,求出A中其他所有元素.
(2)根據(jù)(1),你能得出什么結(jié)論?請(qǐng)證明你的猜想(給出一條即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則
1+a1-a
∈A.
(1)若a=2,求出A中其它所有元素;
(2)0是不是集合A中的元素?請(qǐng)你設(shè)計(jì)一個(gè)實(shí)數(shù)a∈A,再求出A中的所有元素?
(3)根據(jù)(1)(2),你能得出什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則
1+a1-a
∈A

(1)若a=-3,求出A中其它所有元素;
(2)0是不是集合A中的元素?請(qǐng)你設(shè)計(jì)一個(gè)實(shí)數(shù)a∈A,再求出A中的所有元素?
(3)根據(jù)(1)(2),你能得出什么結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A的元素全為實(shí)數(shù),且滿足:若a∈A,則
1+a1-a
∈A

(1)若a=-3,用列舉法表示集合A;
(2)判斷0∈A是否正確,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案