【題目】中心在原點(diǎn)的橢圓C1與雙曲線C2具有相同的焦點(diǎn),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是(
A.
B.
C.(2,3)
D.

【答案】C
【解析】解:設(shè)橢圓的方程為 + =1(a>b>0),

其離心率為e1

雙曲線的方程為 =1(m>0,n>0),其離心率為e2,

|F1F2|=2c,

∵有公共焦點(diǎn)的橢圓與雙曲線在第一象限的交點(diǎn)為P,

△PF1F2是以PF2為底邊的等腰三角形,

∴在橢圓中,|PF1|+|PF2|=2a,而|PF1|=|F1F2|=2c,

∴|PF2|=2a﹣2c,①

同理,在該雙曲線中,|PF2|=2c﹣2m;②

由①②可得m=2c﹣a.

∵e1= ∈( ),

又e2= = = = ∈(2,3).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有個(gè)名句“運(yùn)籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來(lái)進(jìn)行計(jì)算,算籌是將幾寸長(zhǎng)的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如表:
表示一個(gè)多位數(shù)時(shí),像阿拉伯計(jì)數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬(wàn)位數(shù)用縱式表示,十位,千位,十萬(wàn)位用橫式表示,以此類(lèi)推,例如6613用算籌表示就是: ,則5288用算籌式可表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的四邊形ABCD中,∠BAD=90°,∠BCD=120°,∠BAC=60°,AC=2,記∠ABC=θ.
(Ⅰ)求用含θ的代數(shù)式表示DC;
(Ⅱ)求△BCD面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在正常數(shù)a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,則稱(chēng)f(x)為“限增函數(shù)”.給出下列三個(gè)函數(shù):①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函數(shù)”的是(
A.①②③
B.②③
C.①③
D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸的交點(diǎn)為P,與拋物線的交點(diǎn)為Q,且

(1)求拋物線的方程;
(2)如圖所示,過(guò)F的直線l與拋物線相交于A,D兩點(diǎn),與圓x2+(y﹣1)2=1相交于B,C兩點(diǎn)(A,B兩點(diǎn)相鄰),過(guò)A,D兩點(diǎn)分別作我校的切線,兩條切線相交于點(diǎn)M,求△ABM與△CDM的面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超過(guò)x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是8,則判斷框內(nèi)m的取值范圍是(
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P在圓C:x2+y2=4上,而Q為P在x軸上的投影,且點(diǎn)N滿(mǎn)足 ,設(shè)動(dòng)點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若A,B是曲線E上兩點(diǎn),且|AB|=2,O為坐標(biāo)原點(diǎn),求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax(a∈R).
(1)若曲線y=f(x)存在一條切線與直線y=x平行,求a的取值范圍;
(2)當(dāng)0<a<2時(shí),若f(x)在[a,2]上的最大值為﹣ ,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案