【題目】已知函數(shù),.
(1)若在處的切線的方程為,求,的值并求此時(shí)的最值;
(2)在(1)的條件下,不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1),,,無(wú)最大值;(2)
【解析】
(1)利用導(dǎo)數(shù)的幾何意義和點(diǎn)斜式,即可求出切線方程,進(jìn)而求出,即可,再利用導(dǎo)數(shù)求出函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最值.
(2)由,方法一:對(duì)和兩種情況進(jìn)行討論,其中當(dāng)時(shí),令,利用導(dǎo)數(shù)在函數(shù)最值中的應(yīng)用,求解即可;方法二:采用分離參數(shù)法,利用極限思想解題即可;方法三:,對(duì)進(jìn)行分類討論,利用導(dǎo)數(shù)在函數(shù)單調(diào)性和最值中的應(yīng)用解題即可.
解:(1),令得:,由題意:,
∴,
∴,
由得:, 由得:
∴在上單調(diào)遞減;在上單調(diào)遞增
∴,無(wú)最大值;
(2)
法一:①當(dāng)時(shí),,
②當(dāng)時(shí):
令,則
∵∴
(i)若,則 在上單調(diào)遞增, 合題意;
(ii)若,令得:,由得:,所以在上單調(diào)遞減
∴,這與恒成立矛盾,所以不合題意;
綜上的取值范圍是
法二:①當(dāng)時(shí),
②當(dāng)時(shí):
令,則,令,則
所以在單調(diào)遞增,∴,即,∴在上單調(diào)遞增
又
∴,若使恒成立,只需
∴的取值范圍是
(說(shuō)明:①無(wú)論法一還是法二,若考生不對(duì)進(jìn)行討論而得到,均需扣1分;②若考生若采用法二求解,由于高考不提倡用羅比塔法則,可根據(jù)答題情況酌情扣1-2分)
法三:
令,則,令,則
顯然在上單調(diào)遞增,∴
(i)當(dāng)即時(shí),恒成立
∴在上單調(diào)遞增
∴即
∴在上單調(diào)遞增
∴恒成立,即合題意;
(ii)當(dāng)即時(shí),,
∴存在唯一使,當(dāng)時(shí),,∴在上單調(diào)遞減,
∴,即
所以在上單調(diào)遞減,所以,這與在時(shí)恒成立矛盾,所以不合題意;
綜上:的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)高一年級(jí)學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:
(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在和的人中共抽取6人,再?gòu)倪@6人中選2人,求2人服務(wù)次數(shù)都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合,設(shè)集合是集合的非空子集,中的最大元素和最小元素之差稱為集合的直徑. 那么集合所有直徑為的子集的元素個(gè)數(shù)之和為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能.近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏裝機(jī)量兆瓦 | 0.4 | 0.8 | 1.6 | 3.1 | 5.1 | 7.1 | 9.7 | 12.2 |
某位同學(xué)分別用兩種模型:①,②進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于):
經(jīng)過(guò)計(jì)算得,,,,其中,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立關(guān)于的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01)
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點(diǎn),AC與BE相交于點(diǎn)O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F1為橢圓的左焦點(diǎn),在橢圓上,PF1⊥x軸.
(1)求橢圓的方程:
(2)已知直線l與橢圓交于A,B兩點(diǎn),且坐標(biāo)原點(diǎn)O到直線l的距離為的大小是否為定值?若是,求出該定值:若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com