(2012•嘉定區(qū)三模)若實(shí)數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤m.
如果目標(biāo)函數(shù)z=x-y的最小值為-1,則實(shí)數(shù)m=
5
5
分析:畫出不等式組表示的平面區(qū)域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個含參數(shù)m的方程組,消參后即可得到m的取值
解答:解:畫出x,y滿足的可行域如下圖:
可得直線y=2x-1與直線x+y=m的交點(diǎn)使目標(biāo)函數(shù)z=x-y取得最小值,
y=2x-1
x+y=m
可得,x=
1+m
3
, y=
2m-1
3

代入x-y=-1得
1+m
3
-
2m-1
3
=-1

∴m=5
故答案為:5
點(diǎn)評:如果約束條件中含有參數(shù),先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個含有參數(shù)的方程(組),代入另一條直線方程,消去x,y后,即可求出參數(shù)的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)已知動圓圓心在拋物線y2=4x上,且動圓恒與直線x=-1相切,則此動圓必過定點(diǎn)
(1,0)
(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=t
y=
3
t
(l為參數(shù)),以O(shè)x的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,則圓C上的點(diǎn)到直線l距離的最大值是
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)設(shè)集合A={x|x<1,x∈R},B={x|x2<4,x∈R},則A∩B=
{x|-2<x<1}
{x|-2<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)設(shè)a、b∈R,i為虛數(shù)單位,若(a+i)i=b+i,則復(fù)數(shù)z=a+bi的模為
2
2

查看答案和解析>>

同步練習(xí)冊答案