【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):
單價(jià)(元) | 4 | 6 | 7 | 8 | 10 |
銷(xiāo)量(件) | 60 | 50 | 45 | 30 | 20 |
(1) 請(qǐng)根據(jù)上表提供的數(shù)據(jù)畫(huà)出散點(diǎn)圖,并判斷是正相關(guān)還是負(fù)相關(guān);
(2) 求出關(guān)于的回歸直線方程,若單價(jià)為9元時(shí),預(yù)測(cè)其銷(xiāo)量為多少?
(參考公式:回歸直線方程中公式 ,)
【答案】(1)見(jiàn)解析;(2) ,若單價(jià)為9元時(shí),預(yù)測(cè)其銷(xiāo)量為27件.
【解析】
(1)結(jié)合所給的數(shù)據(jù)繪制散點(diǎn)圖,觀察可得銷(xiāo)量與單價(jià)成負(fù)相關(guān);
(2)結(jié)合所給的數(shù)據(jù)計(jì)算可得線性回歸方程為;結(jié)合回歸方程,時(shí),可得估計(jì)的值.
(1)
由散點(diǎn)圖可知銷(xiāo)量與單價(jià)成負(fù)相關(guān).
(2),
,,
,
因此回歸直線方程為.
時(shí),估計(jì)的值為.
單價(jià)為9元時(shí),預(yù)測(cè)其銷(xiāo)量為27件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個(gè)命題:
①三棱錐的體積為定值;
②經(jīng)過(guò)四點(diǎn)的球的直徑為;
③直線∥平面;
④直線所成的角為;
其中真命題的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,點(diǎn)在橢圓上.
求橢圓的方程;
已知與為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱是“回歸數(shù)列”.
()①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由.②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說(shuō)明理由;
()設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值.
()是否對(duì)任意的等差數(shù)列,總存在兩個(gè)“回歸數(shù)列”和,使得成立,請(qǐng)給出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某生產(chǎn)企業(yè)對(duì)其所生產(chǎn)的甲、乙兩種產(chǎn)品進(jìn)行質(zhì)量檢測(cè),分別各抽查6件產(chǎn)品,檢測(cè)其重量的誤差,測(cè)得數(shù)據(jù)如下(單位:):
甲:13 15 13 8 14 21
乙:15 13 9 8 16 23
(1)畫(huà)出樣本數(shù)據(jù)的莖葉圖;
(2)分別計(jì)算甲、乙兩組數(shù)據(jù)的方差并分析甲、乙兩種產(chǎn)品的質(zhì)量(精確到0.1)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黨的十八大以來(lái),我國(guó)精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國(guó)貧困人口從2012年的9899萬(wàn)人,減少到2018年的1660萬(wàn)人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬(wàn)人以上的目標(biāo),力爭(zhēng)2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問(wèn)題,市扶貧辦近三年來(lái),每半年對(duì)貧困戶(用表示,單位:萬(wàn)戶)進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從2016年6月底到2019年6月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號(hào)表示,例如:2016年12月底(時(shí)間序號(hào)為2)貧困戶為5.2萬(wàn)戶.
(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)到2020年12月底,該市能否實(shí)現(xiàn)貧困戶全部脫貧;
(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在2019年6月底時(shí),對(duì)全市貧困戶隨機(jī)抽取了100戶貧困戶,對(duì)每個(gè)家庭最主要經(jīng)濟(jì)收入來(lái)源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對(duì)全市所有貧困戶中,家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶,每一名農(nóng)業(yè)技術(shù)人員對(duì)口幫扶貧困戶90戶,則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對(duì)家庭最主要經(jīng)濟(jì)收入來(lái)源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,為上一點(diǎn).
(1)若平面,試說(shuō)明點(diǎn)的位置并證明的結(jié)論;
(2)若為的中點(diǎn),平面,且,
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線:,:,則下面結(jié)論正確的是( )
A.把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
B.把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
C.把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線
D.把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:
數(shù)據(jù)表明與之間有較強(qiáng)的線性關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);
(3)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù),.
,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com