【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函數(shù)f(x)= +| + |的最大值,并求使函數(shù)取得最大值時(shí)x的值.

【答案】
(1)解: =cos cos ﹣sin sin =cos2x,

= =1.

| + |= = =2|cosx|,

∵x∈[ ,π],∴cosx≤0.

═2cosx


(2)解:由(1)可得:函數(shù)f(x)= +| + |

=cos2x﹣2cosx

=2cos2x﹣2cosx﹣1

= ,

當(dāng)x=π,cosx=﹣1時(shí),f(x)取得最大值3


【解析】(1)利用數(shù)量積的坐標(biāo)運(yùn)算、兩角和差的余弦公式可得 =cos2x,由 = =1.可得| + |= .(2)由(1)可得:函數(shù)f(x)= +| + |=cos2x﹣2cosx= ,利用二次函數(shù)、余弦函數(shù)的單調(diào)性即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點(diǎn)A(1,0),D(﹣1,0),點(diǎn)B,C在單位圓O上,且∠BOC=
(Ⅰ)若點(diǎn)B( ),求cos∠AOC的值;
(Ⅱ)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長為y,將y表示成x的函數(shù),并求出y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+(m+2)x+(2m+5)(m≠0)的兩個(gè)零點(diǎn)分別在區(qū)間(﹣1,0)和區(qū)間(1,2)內(nèi),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,若a9+3a11<0,a10a11<0,且數(shù)列{an}的前n項(xiàng)和Sn有最大值,那么Sn取得最小正值時(shí)n等于(
A.20
B.17
C.19
D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)討論函數(shù)的單調(diào)性;

(2)記,設(shè), 為函數(shù)圖象上的兩點(diǎn),且

(。┊(dāng) 時(shí),若處的切線相互垂直,求證: ;

(ⅱ)若在點(diǎn)處的切線重合,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)設(shè)曲線的內(nèi)接矩形的周長為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增等比數(shù)列{an}的第三項(xiàng)、第五項(xiàng)、第七項(xiàng)的積為512,且這三項(xiàng) 分別減去1,3,9后成等差數(shù)列.
(1)求{an}的首項(xiàng)和公比;
(2)設(shè)Sn=a12+a22+…+an2 , 求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用an表示自然數(shù)n的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,則a9=9;10的因數(shù)有1,2,5,10,則a10=5,記數(shù)列{an}的前n項(xiàng)和為Sn , 則S =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實(shí)數(shù)m的范圍;
(2)在方程表示圓時(shí),該圓與直線l:x+2y﹣4=0相交于M、N兩點(diǎn),且|MN|= ,求m的值.

查看答案和解析>>

同步練習(xí)冊答案