【題目】設(shè)是定義在上的奇函數(shù),且,當(dāng)時,有恒成立,則不等式的解集為
A. B.
C. D.
【答案】D
【解析】
由已知當(dāng)時,有恒成立,可判斷函數(shù) 為減函數(shù),由是定義在R上的奇函數(shù),可得g(x)為(-∞,0)∪(0,+∞)上的偶函數(shù),根據(jù)函數(shù)g(x)在(0,+∞)上的單調(diào)性和奇偶性,結(jié)合g(x)的圖象,解不等式即可
設(shè)則g(x)的導(dǎo)數(shù)為 ∵當(dāng)x>0時總有xf′(x)<f(x)成立,即當(dāng)x>0時,g′(x)<0,∴當(dāng)x>0時,函數(shù)為減函數(shù),又,∴函數(shù)g(x)為定義域上的偶函數(shù)又∵
∴函數(shù)g(x)的圖象如圖:數(shù)形結(jié)合可得
∵xf(x)>0且,f(x)=xg(x)(x≠0)
∴x2g(x)>0∴g(x)>0 ∴0<x<1或-1<x<0 故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣1|﹣a)
(1)當(dāng)a=3時,求函數(shù)f(x)的定義域;
(2)若不等式f(x)≥2的解集為R,求實數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線過點P且與x軸、y軸的正半軸分別交于A,B兩點,O為坐標(biāo)原點,是否存在這樣的直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6.若存在,求出方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的標(biāo)準(zhǔn)方程為,該橢圓經(jīng)過點,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓長軸上一點作兩條互相垂直的弦.若弦的中點分別為,證明:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且過點P。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過橢圓的右焦點F交橢圓于A.B兩點,求弦AB的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于的線性回歸方程;
(2)判斷y與之間是正相關(guān)還是負(fù)相關(guān)?
(3)預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|cosx|sinx+sin2x,給出下列四個命題:
①函數(shù)f(x)的圖象關(guān)于直線 對稱;
②函數(shù)f(x)在區(qū)間 上單調(diào)遞增;
③函數(shù)f(x)的最小正周期為π;
④函數(shù)f(x)的值域為[﹣2,2].
其中真命題的序號是 . (將你認(rèn)為真命題的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com