動(dòng)點(diǎn)p(x,y)的軌跡方程為
(x-3)2+y2
-
(x+3)2+y2
=4
,則判斷該軌跡的形狀后,可將其方程化簡(jiǎn)為對(duì)應(yīng)標(biāo)準(zhǔn)方程______.
設(shè)A(-3,0),B(3,0)
由于動(dòng)點(diǎn)P(x,y)的軌跡方程為
(x-3)2+y2
-
(x+3)2+y2
=4

則|PB|-|PA|=4,故點(diǎn)P到定點(diǎn)B(3,0)與到定點(diǎn)A(-3,0)的距離差為4,
則動(dòng)點(diǎn)P(x,y)的軌跡是以(±3,0)為焦距,以4為實(shí)軸長(zhǎng)的雙曲線(xiàn)的左支,
由于2a=4,c=3,則b2=c2-a2=5,
故P的軌跡的標(biāo)準(zhǔn)方程為:
x2
4
-
y2
5
=1
(x≤-2).
故答案為:
x2
4
-
y2
5
=1
(x≤-2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

ab<0”是“曲線(xiàn)ax2+by2=1為雙曲線(xiàn)”的
A充分不必要條件      B必要不充分條件
C充分必要條件        D既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

平面上兩點(diǎn)F1,F(xiàn)2滿(mǎn)足|F1F2|=4,設(shè)d為實(shí)數(shù),令D表示平面上滿(mǎn)足||PF1|-|PF2||=d的所有P點(diǎn)組成的圖形,又令C為平面上以F1為圓心、6為半徑的圓.則下列結(jié)論中,其中正確的有______(寫(xiě)出所有正確結(jié)論的編號(hào)).
①當(dāng)d=0時(shí),D為直線(xiàn);
②當(dāng)d=1時(shí),D為雙曲線(xiàn);
③當(dāng)d=2時(shí),D與圓C交于兩點(diǎn);
④當(dāng)d=4時(shí),D與圓C交于四點(diǎn);
⑤當(dāng)d=4時(shí),D不存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線(xiàn)
x2
25
-
y2
9
=1
的漸近線(xiàn)方程是( 。
A.y=±
25
9
x
B.y=±
5
3
x
C.y=±
25
9
x
D.y=±
3
5
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

雙曲線(xiàn)
x2
24tanα
-
y2
16cotα
=1(α為銳角)過(guò)定點(diǎn)(4
3
,4),則α=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線(xiàn)的漸近線(xiàn)方程為y=±
x
2
,虛軸長(zhǎng)為4,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線(xiàn)
x2
m2-4
-
y2
m+1
=1
的焦點(diǎn)在y軸上,則m的取值范圍是( 。
A.(-2,2)B.(-2,-1)C.(1,2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

y=±
3
x
為漸近線(xiàn),且焦距為8的雙曲線(xiàn)方程為( 。
A.
y2
3
-x2=1
B.
y2
12
-
x2
4
=1
x2
4
-
y2
12
=1
C.
y2
12
-
x2
4
=1
D.
y2
3
-x2=1或
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線(xiàn)l⊥FH于H,O為FH的中點(diǎn),曲線(xiàn)C1,C2是以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的圓錐曲線(xiàn)(圖中只畫(huà)出曲線(xiàn)的一部分),那么圓錐曲線(xiàn)C1是______;圓錐曲線(xiàn)C2是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案