已知回歸直線方程
y
=0.6x-0.71,則當(dāng)x=25時(shí),y的估計(jì)值是______.
[解析]當(dāng)x=25時(shí),程
y
═0.6×25-0.71=14.29.
所以y的估計(jì)值為:14.29.
故答案為:14.29.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某種產(chǎn)品的廣告費(fèi)支出x與消費(fèi)額y(單位:百萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040605070
(1)求線性回歸方程;
(2)預(yù)測(cè)當(dāng)廣告費(fèi)支出為700萬(wàn)元時(shí)的銷售額.(b=
n
i=1
xiy1-n
.
x
.
y
x2i-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某大型養(yǎng)雞場(chǎng)在本年度的第x月的盈利y(萬(wàn)元)與x的對(duì)應(yīng)值如表:
x1234
y65708090
(1)依據(jù)這些數(shù)據(jù)求出x,y之間的回歸直線方程
y
=
b
x+
a

(2)依據(jù)此回歸直線方程預(yù)測(cè)第五個(gè)月大約能盈利多少萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)有一個(gè)回歸方程
y
=3-5x,變量x增加一個(gè)單位時(shí)(  )
A.y平均增加3個(gè)單位B.y平均減少5個(gè)單位
C.y平均增加5個(gè)單位D.y平均減少3個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果某地財(cái)政收入x(億元)與支出y(億元)滿足線性回歸方程
y
=bx+a+e(單位:億元),其中b=0.8,a=2,|e|≤0.5,如果今年該地區(qū)的財(cái)政收入為10億元,則年支出預(yù)計(jì)不會(huì)超過(guò)( 。
A.9億元B.9.5億元C.10億元D.10.5億元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某種產(chǎn)品的廣告費(fèi)用支出x與銷售額y之間有如下的對(duì)應(yīng)數(shù)據(jù):
x24568
y3040506070
(1)求y對(duì)x的回歸直線方程;
(2)據(jù)此估計(jì)廣告費(fèi)用為10銷售收入y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在兩個(gè)變量y與x的回歸模型中,分別選擇了4個(gè)不同模型,它們的R2如下,其中擬合效果最好的模型是(  )
A.模型1的R2為0.975B.模型2的R2為0.79
C.模型3的R2為0.55D.模型4的R2為0.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某車間加工零件的數(shù)量x與加工時(shí)間y的統(tǒng)計(jì)數(shù)據(jù)如表:
零件數(shù)x(個(gè))102030
加工時(shí)間y(分鐘)213039
現(xiàn)已求得上表數(shù)據(jù)的回歸方程
y
=
b
x+
a
中的
b
值為0.9,則據(jù)此回歸模型可以預(yù)測(cè),加工100個(gè)零件所需要的加工時(shí)間約為( 。
A.84分鐘B.94分鐘C.102分鐘D.112分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下表是關(guān)于出生男嬰與女嬰調(diào)查的列聯(lián)表
晚上白天總計(jì)
男嬰45AB
女嬰E35C
總計(jì)98D180
那么A=______,B=______,C=______,D=______,E=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案