(本題滿分10分)選修4   -4 :坐標(biāo)系與參數(shù)方程
將圓上各點(diǎn)的縱坐標(biāo)壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0
繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得直線記作l
.(I)求直線l與曲線C的方程;
(II)求C上的點(diǎn)到直線l的最大距離.
.(I) 曲線C: ;直線l : ;(II)

試題分析:(Ⅰ)設(shè)曲線上任一點(diǎn)為,則在圓上,
于是.
直線的極坐標(biāo)方程為,將其記作
設(shè)直線上任一點(diǎn)為,則點(diǎn)上,
于是,即:
故直線的方程為;                                 …5分
(Ⅱ)設(shè)曲線上任一點(diǎn)為
它到直線的距離為,
其中滿足:.
∴當(dāng)時(shí),.                                   …10分
點(diǎn)評(píng):本題主要考查了直線與橢圓的極坐標(biāo)方程的靈活應(yīng)用。考查了學(xué)生分析問題的能力及數(shù)學(xué)化歸思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的參數(shù)方程為是參數(shù)是曲線軸正半軸的交點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn)與曲線只有一個(gè)公共點(diǎn)的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

參數(shù)方程,(為參數(shù))化成普通方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(坐標(biāo)系與參數(shù)方程選做題)已知兩曲線參數(shù)方程分別為 ,它們的交點(diǎn)坐標(biāo)為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù),α為直線的傾斜角),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1) 若直線與圓C相切,求的值;
(2) 若直線與圓C交與A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C:為參數(shù)).
(1)將C的參數(shù)方程化為普通方程;
(2)若把C上各點(diǎn)的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線是動(dòng)點(diǎn)到兩個(gè)定點(diǎn)距離之比為的點(diǎn)的軌跡。
(1)求曲線的方程;(2)求過點(diǎn)與曲線相切的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給定兩個(gè)長度為1的平面向量,它們的夾角為,如圖所示,點(diǎn)C在以為圓心的圓弧AB上運(yùn)動(dòng),若,其中,則的最大值是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線的參數(shù)方程是(   )
A (t為參數(shù))         B (t為參數(shù))
C  (t為參數(shù))         D 為參數(shù))

查看答案和解析>>

同步練習(xí)冊答案