設(shè)函數(shù)f(x)滿足:對(duì)任意的x1,x2∈R都有(x1-x2)[f(x1)-f(x2)]>0,則f(-3)與f(-π)的大小關(guān)系是
f(-3)>f(-π)
f(-3)>f(-π)
分析:先確定函數(shù)是增函數(shù),再利用單調(diào)性的定義,即可得到結(jié)論.
解答:解:∵函數(shù)f(x)滿足:對(duì)任意的x1,x2∈R都有(x1-x2)[f(x1)-f(x2)]>0,
∴函數(shù)f(x)是增函數(shù)
∵-3>-π
∴f(-3)>f(-π)
故答案為:f(-3)>f(-π).
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,考查單調(diào)性的運(yùn)用,確定函數(shù)的單調(diào)性是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)滿足f(-x)=f(x),且在[1,2]上遞增,則f(x)在[-2,-1]上的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)滿足2f(x)-f(
1
x
)=4x-
2
x
+1
,數(shù)列{an}和{bn}滿足下列條件:a1=1,an+1-2an=f(n),bn=an+1-an,cn=an+2n+3.
(1)求f(x)的解析式;
(2)證明{cn}成等比數(shù)列,并求{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)設(shè)函數(shù)f(x)滿足x2f′(x)+2xf(x)=
ex
x
,f(2)=
e2
8
,則x>0時(shí),f(x)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)滿足f(ex)=x2-2ax+a2-1(a∈R),
(1)求函數(shù)y=f(x)的解析式;
(2)若f(x)在區(qū)間[1,e]上恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+xy(x+y),又f'(0)=1,則函數(shù)f(x)的解析式為
f(x)=x+
1
3
x3
f(x)=x+
1
3
x3

查看答案和解析>>

同步練習(xí)冊(cè)答案