【題目】某些商家為消費者提供免費塑料袋,使購物消費更加方便快捷,但是我們更應(yīng)關(guān)注它對環(huán)境的潛在危害.為了解某市所有家庭每年丟棄塑料袋個數(shù)的情況,統(tǒng)計人員采用了科學(xué)的方法,隨機抽取了200戶,對他們某日丟棄塑料袋的個數(shù)進行了統(tǒng)計,結(jié)果如下表:

1)求當(dāng)日這200戶家庭平均每戶丟棄塑料袋的個數(shù);

2)假設(shè)某市現(xiàn)有家庭100萬戶,據(jù)此估計全市所有家庭每年(以365天計算)丟棄塑料袋的總數(shù).

【答案】13;(2109500萬個

【解析】

1)計算該樣本的平均值,即可得出當(dāng)日這200戶家庭平均每戶丟棄塑料袋的個數(shù);

2)根據(jù)平均每戶丟棄塑料袋的個數(shù)乘以365,再乘以100,即可得出全市所有家庭每年丟棄塑料袋的總數(shù).

1

故當(dāng)日這200戶家庭平均每戶丟棄塑料袋的個數(shù)為3.

2

故全市所有家庭每年丟棄塑料袋109500萬個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電影公司隨機收集了電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到下表:

電影類型

第一類

第二類

第三類

第四類

第五類

第六類

電影部數(shù)

140

50

300

200

800

510

好評率

0.4

0.2

0.15

0.25

0.2

0.1

好評率是指:一類電影中獲得好評的部數(shù)與該類電影的部數(shù)的比值.

(Ⅰ)從電影公司收集的電影中隨機選取1部,求這部電影是獲得好評的第四類電影的概率;

(Ⅱ)隨機選取1部電影,估計這部電影沒有獲得好評的概率;

(Ⅲ)電影公司為增加投資回報,擬改變投資策略,這將導(dǎo)致不同類型電影的好評率發(fā)生變化.假設(shè)表格中只有兩類電影的好評率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評率增加0.1,哪類電影的好評率減少0.1,使得獲得好評的電影總部數(shù)與樣本中的電影總部數(shù)的比值達到最大?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將要舉行校園歌手大賽,現(xiàn)有43女參加,需要安排他們的出場順序.結(jié)果用數(shù)字作答

1)如果3個女生都不相鄰,那么有多少種不同的出場順序?

2)如果女生甲在女生乙的前面(可以不相鄰),那么有多少種不同的出場順序?

3)如果3位女生都相鄰,且女生甲不在第一個出場,那么有多少種不同的出場順序?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若存在區(qū)間,使上的值域為,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務(wù)進行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機支付儼然成為新寵.某金融機構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.

組數(shù)

第l組

第2組

第3組

第4組

第5組

分組

頻數(shù)

20

36

30

10

4

(1)求;

(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):

(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機,若要擊落敵機,需命中機首2次或命中機中3次或命中機尾1次,已知A每次射擊,命中機首、機中、機尾的概率分別為0.2、0.4、0.1,未命中敵機的概率為0.3,且各次射擊相互獨立。若A至多射擊兩次,則他能擊落敵機的概率為( )

A. 0.23 B. 0.2 C. 0.16 D. 0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中,為常數(shù)且處取得極值.

1當(dāng)時,求的單調(diào)區(qū)間;

2上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程;

(2)若兩條互相垂直的直線都經(jīng)過原點(兩條直線與坐標(biāo)軸都不重合)且與曲線分別交于點(異于原點),且,求這兩條直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張矩形白紙,分別為的中點,現(xiàn)分別將沿折起,且點在平面同側(cè),則下列命題正確的是______(寫出所有正確命題的序號)

①當(dāng)平面//平面時,//平面

②當(dāng)平面//平面時,//;

③當(dāng)重合于點時,

④當(dāng),重合于點時,三棱錐的外接球的表面積為.

查看答案和解析>>

同步練習(xí)冊答案