精英家教網 > 高中數學 > 題目詳情

若函數f(x)滿足f(x+1)=f(x),則f(x)的解析式在下列四式中只有可能是

[  ]

A.
B.x+
C.2-x
D.
答案:C
解析:

由題意知相鄰兩項之商是常數,故數列是等比數列故選C2x


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c(a≠0)滿足條件:①當x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調函數,求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)定義:若存在常數k,使得對定義域D內的任意兩個不同的實數x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個滿足利普希茨(Lipschitz)條件的函數及常數k的值,并加以驗證;
(2)若函數f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數k的最小值;
(3)現(xiàn)有函數f(x)=sinx,請找出所有的一次函數g(x),使得下列條件同時成立:
①函數g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•成都二模)對于定義在區(qū)間D上的函數f(x),若滿足對?x1,x2∈D,且x1<x2時都有 f(x1)≥f(x2),則稱函數f(x)為區(qū)間D上的“非增函數”.若f(x)為區(qū)間[0,1]上的“非增函數”且f(0)=l,f(x)+f(l-x)=l,又當x∈[0,
1
4
]時,f(x)≤-2x+1恒成立.有下列命題:
①?x∈[0,1],f(x)≥0;
②當x1,x2∈[0,1]且x1≠x2,時,f(x1)≠f(x)
③f(
1
8
)+f(
5
11
)+f(
7
13
)+f(
7
8
)=2;
④當x∈[0,
1
4
]時,f(f(x))≤f(x).
其中你認為正確的所有命題的序號為
①③④
①③④

查看答案和解析>>

科目:高中數學 來源:四川省成都樹德中學2012屆高考適應考試(一)數學試題文理科 題型:022

對于函數f(x),定義:若存在非零常數M,T,使函數f(x)對定義域內的任意x,都滿足f(x+T)-f(x)=M,則稱函數y=f(x)是準周期函數,非零常數T稱為函數y=f(x)的一個準周期.如函數f(x)=2x+sinx是以T=2π為一個準周期且M=4π的準周期函數.下列命題:

①2π是函數f(x)=sinx的一個準周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個準周期且M=2的準周期函數;

③函數f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準周期函數;

④如果f(x)是一個一次函數與一個周期函數的和的形式,則f(x)一定是準周期函數;

⑤如果f(x+1)=-f(x)則函數h(x)=x+f(x)是以T=2為一個準周期且M=4的準周期函數;其中的真命題是________

查看答案和解析>>

同步練習冊答案