已知數(shù)列是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和
(1);(2)

試題分析:(1)數(shù)列的公差為,然后根據(jù)題目列出方程即可求出通項(xiàng)公式;
(2)根據(jù)通項(xiàng)公式的形式,由,利用裂項(xiàng)求和法得即可.
試題解析:(1)設(shè)數(shù)列的公差為,
成等比數(shù)列,得
解得                      2分
當(dāng)時(shí),,這與成等比數(shù)列矛盾舍去
所以                            4分
。即數(shù)列的通項(xiàng)公式為 6分
(2)    7分
                         9分

         12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,,對(duì)任意的、成等比數(shù)列,公比為、、成等差數(shù)列,公差為,且
(1)寫出數(shù)列的前四項(xiàng);
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正實(shí)數(shù)數(shù)列{an}中,a1=1,a2=5,且{}成等差數(shù)列.
(1)證明:數(shù)列{an}中有無(wú)窮多項(xiàng)為無(wú)理數(shù);
(2)當(dāng)n為何值時(shí),an為整數(shù)?并求出使an<200的所有整數(shù)項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=1,=an+1n2-n-,n∈N*.
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

是點(diǎn)集A到點(diǎn)集B的一個(gè)映射,且對(duì)任意,有.現(xiàn)對(duì)點(diǎn)集A中的點(diǎn),均有,點(diǎn)為(0,2),則線段的長(zhǎng)度            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)同時(shí)滿足條件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是與n無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列{bn}叫“特界” 數(shù)列.
(1) 若數(shù)列{an}為等差數(shù)列,Sn是其前n項(xiàng)和,a3=4,S3=18,求Sn;
(2) 判斷(1)中的數(shù)列{Sn}是否為“特界” 數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=5,S3=9.
(1)求首項(xiàng)a1和公差d的值;
(2)若Sn=100,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等比數(shù)列中,,則數(shù)列的通項(xiàng)公式_____________,設(shè),則數(shù)列的前項(xiàng)和_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,已知,則(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案