【題目】正方體ABCD﹣A1B1C1D1中直線BC1與平面BB1D1D所成角的余弦值是

【答案】
【解析】解:以D為原點(diǎn),AD為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD﹣A1B1C1D1中棱長為1,
則B(1,1,0),C1(0,1,1),D(0,0,0),D1(0,0,1),
=(﹣1,0,1), =(0,0,1), =(1,1,0),
設(shè)平面BB1D1D的法向量 =(x,y,z),
,取x=1,得 =(1,﹣1,0),
設(shè)直線BC1與平面BB1D1D所成角為θ,
則sinθ= = =
∴cosθ= = ,
∴直線BC1與平面BB1D1D所成角的余弦值為
所以答案是:
【考點(diǎn)精析】利用空間角的異面直線所成的角對題目進(jìn)行判斷即可得到答案,需要熟知已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1 , y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,已知DA=DC=4,DD1=3,求直線A1B與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=(萬元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+(萬元).每件商品售價(jià)為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圓,則圓心坐標(biāo)是 , 半徑是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)五邊形中,

,將沿折到的位置,得到四棱錐,如圖(2),點(diǎn)為線段的中點(diǎn),且平面.

(1)求證:平面平面;

(2)若四棱柱的體積為,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=ax﹣3.
(1)當(dāng)a=l時(shí),確定函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上的單調(diào)性;
(2)若對任意x∈[0,4],總存在x0∈[﹣2,2],使得g(x0)=f(x)成立,求 實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ),曲線處的切線方程為.

(Ⅰ)求, 的值;

(Ⅱ)證明: ;

(Ⅲ)已知滿足的常數(shù)為.令函數(shù)(其中是自然對數(shù)的底數(shù), ),若的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P﹣ABC中,PO⊥面ABC,垂足為O,若PA⊥BC,PC⊥AB,求證:
(1)AO⊥BC
(2)PB⊥AC.

查看答案和解析>>

同步練習(xí)冊答案