(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點c為o 上不同于A、B的一點,AD為的平分線,且分別與BC 交于H,與O交于D,與BE交于E,連結(jié)BD、CD.

(I )求證:BD平分
(II)求證:AH.BH=AE.HC
(1)結(jié)合弦切角定理來證明角相等,從而得到平分問題。
(2)利用三角形的相似來得到對應(yīng)線段的長度之積相等。

試題分析:證明:(Ⅰ)由弦切角定理知  …………2分

,
所以, 即…………5分
(Ⅱ)由(Ⅰ)可知
所以,……………7分
因為,,
所以,
所以,即…………10分
即:.
點評:解決該試題的關(guān)鍵是對于平分角的求解,可以利用角相等,結(jié)合弦切角定理來得到角相等的證明,同時利用相似三角形來證明對應(yīng)邊的乘積相等,培養(yǎng)分析問題和解決問題的能力,屬于中檔題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的方程為,直線過點,且與圓相切.
(1)求直線的方程;
(2)設(shè)圓軸交于兩點,是圓上異于的任意一點,過點且與軸垂直的直線為,直線交直線于點,直線交直線于點.求證:的外接圓總過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知是圓的直徑,是弦,,垂足為,平分

(1)求證:直線與圓的相切;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線上所有的點均在第二象限內(nèi),則的取值范圍為       。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

兩圓相交于兩點,兩圓圓心都在直線上,且均為實數(shù),則          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知方程.
(1)若此方程表示圓,求的取值范圍;
(2)若(1)中的圓與直線相交于兩點,且(為坐標原點)求的值;
(3)在(2)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知的邊所在直線的方程為,滿足, 點所在直線上且

(Ⅰ)求外接圓的方程;
(Ⅱ)一動圓過點,且與的外接圓外切,求此動圓圓心的軌跡的方程;
(Ⅲ)過點斜率為的直線與曲線交于相異的兩點,滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

關(guān)于對稱的圓的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與圓上任一點連線的中點軌跡方程是(    )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案