已知復(fù)數(shù)滿足是虛數(shù)單位),則

 

【解析】

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719072134308075/SYS201411171907218431616270_DA/SYS201411171907218431616270_DA.002.png">,所以本題也可設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719072134308075/SYS201411171907218431616270_DA/SYS201411171907218431616270_DA.005.png">由復(fù)數(shù)相等得:

考點(diǎn):復(fù)數(shù)的四則運(yùn)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南通市高三第二次調(diào)研測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)數(shù)列{an}共有n()項(xiàng),且,對(duì)每個(gè)i (1≤i≤,iN),均有

(1)當(dāng)時(shí),寫(xiě)出滿足條件的所有數(shù)列{an}(不必寫(xiě)出過(guò)程);

(2)當(dāng)時(shí),求滿足條件的數(shù)列{an}的個(gè)數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南通市高三年級(jí)第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)的圖象如圖所示,則

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南通市高三年級(jí)第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在△ABC中,BC=,AC=1,以AB為邊作等腰直角三角形ABD(B為直角頂點(diǎn),C、D兩點(diǎn)

在直線AB的兩側(cè)).當(dāng)變化時(shí),線段CD長(zhǎng)的最大值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南通市高三年級(jí)第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在平面直角坐標(biāo)系中,曲線的離心率為,且過(guò)點(diǎn),則曲線的標(biāo)準(zhǔn)方程

為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南京市高三年級(jí)第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知M是橢圓=1上在第一象限的點(diǎn),A(2,0),B(0,2)

是橢圓兩個(gè)頂點(diǎn),求四邊形OAMB的面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南京市高三年級(jí)第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB?平面PAD,△PAD是正三角形,

DC//AB,DA=DC=2AB.

(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求的值;

(2)求證:平面PBC?平面PDC.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知正項(xiàng)數(shù)列中,其前項(xiàng)和為,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)是數(shù)列的前項(xiàng)和,是數(shù)列的前項(xiàng)和,求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù).

(1)若函數(shù)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;

(2)當(dāng)a=1時(shí),求函數(shù)在區(qū)間[t,t+3]上的最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案