設(shè)曲線y=x3-2x+4在點(diǎn)(1,3)處的切線為l,則直線l的傾斜角為
π
4
π
4
分析:欲求在點(diǎn)(1,3)處的切線傾斜角,先根據(jù)導(dǎo)數(shù)的幾何意義可知k=y′|x=1,再結(jié)合正切函數(shù)的值求出傾斜角的值即可.
解答:解:由題意可得:y′=3x2-2,
因?yàn)榍悬c(diǎn)為(1,3),
所以切線的斜率k=3×12-2=1.
故傾斜角為
π
4

故答案為
π
4
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義,以及利用正切函數(shù)的圖象求傾斜角,本題屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=x3-2x+4在點(diǎn)(1,3)處的切線為l,則直線l與坐標(biāo)軸圍成的三角形面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)曲線y=x3-2x+4在點(diǎn)(1,3)處的切線為l,則直線l與坐標(biāo)軸圍成的三角形面積為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)曲線y=x3-2x+4在點(diǎn)(1,3)處的切線為l,則直線l的傾斜角為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)曲線y=x3-2x+4在點(diǎn)(1,3)處的切線為l,則直線l與坐標(biāo)軸圍成的三角形面積為( )
A.1
B.2
C.4
D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案