【題目】在直角坐標(biāo)系中,曲線,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求,的極坐標(biāo)方程;
(2)射線l的極坐標(biāo)方程為,若l分別與,交于異于極點(diǎn)的,兩點(diǎn),求的最大值.
【答案】(1)的極坐標(biāo)方程為,的極坐標(biāo)方程為;
(2);
【解析】
(1)利用直角坐標(biāo)和極坐標(biāo)相互轉(zhuǎn)化的公式,將曲線的直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程.先求得曲線的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.
(2)將射線的極坐標(biāo)方程分別和聯(lián)立,求得和的表達(dá)式,利用二次函數(shù)的性質(zhì)求得的最大值,也即求得的最大值.
(1),
故的極坐標(biāo)方程為.
而的直角坐標(biāo)方程為,即,
的極坐標(biāo)方程為.
(2)直線l分別與,聯(lián)立得
,則
,則
,
由于,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),有最大值為,故有最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共12分)
已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為:(為參數(shù),已知直線,直線以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C以及直線,的極坐標(biāo)方程;
(2)若直線與曲線C分別交于O、A兩點(diǎn),直線與曲線C分別交于O、B兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)①求證:當(dāng)任意取值時(shí),的圖像始終經(jīng)過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo);
②若的圖像在該定點(diǎn)處取得極值,求的值;
(2)求證:當(dāng)時(shí),函數(shù)有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、、是三條不同的直線,、、是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,,,,則;
②若,,則;
③若,是兩條異面直線,,,,且,則;
④若,,,,,則.
其中正確命題的序號(hào)是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.若函數(shù)的圖象在點(diǎn)處的切線與的圖象也相切.
(1)求的方程和的值;
(2)設(shè)不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn).其左、右兩個(gè)焦點(diǎn)分別為、,短軸的一個(gè)端點(diǎn)為,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線:與橢圓交于不同的兩點(diǎn),,且為坐標(biāo)原點(diǎn).若,求的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com