【題目】為減少空氣污染,某市鼓勵居民用電(減少燃?xì)饣蛉济海,采用分段?jì)費(fèi)的方法計(jì)算電費(fèi).每月用電不超過100度時(shí),按每度0.57元計(jì)算,每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.
(1)設(shè)月用電x度時(shí),應(yīng)交電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如下:問小明家第一季度共用電多少度?
月份 | 一月 | 二月 | 三月 | 合計(jì) |
交費(fèi)金額 | 76元 | 63元 | 45.6元 | 184.6元 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)的定義域?yàn)榧螦,函數(shù)的值域?yàn)榧螧.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a﹣1},且B∩C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)
已知橢圓 的左焦點(diǎn)為,右焦點(diǎn)為,離心率.過的直線交橢圓于、兩點(diǎn),且的周長為.
(1)求橢圓的方程;
(2)設(shè)動直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).求證:以為直徑的圓恒過一定點(diǎn).并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程是,雙曲線的左右焦點(diǎn)分別為的左右頂點(diǎn),而的左右頂點(diǎn)分別是的左右焦點(diǎn).
(1)求雙曲線的方程;
(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn),且與的兩個(gè)交點(diǎn)A和B滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是[0,1]上的不減函數(shù),即對于0≤x1≤x2≤1有f(x1)≤f(x2),且滿足(1)f(0)=0;(2)f( )= f(x);(3)f(1﹣x)=1﹣f(x),則f( )=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)這50名學(xué)生百米測試成績的中位數(shù)和平均值(精確到);
(2)若從第一、五組中隨機(jī)取出兩個(gè)成績,列舉所有選取方法,并求這兩個(gè)成績的差的絕對值大于1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),曲線在點(diǎn)處的切線與直線垂直.
(Ⅰ)試比較與的大小,并說明理由;
(Ⅱ)若函數(shù)有兩個(gè)不同的零點(diǎn), ,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com