精英家教網(wǎng)如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過(guò)A、B兩點(diǎn)分別作⊙O的切線,兩切線交于點(diǎn)P.若已知⊙O的半徑為1,則△PAB的周長(zhǎng)為( 。
A、3
3
B、2
2
C、3
2
D、2
3
分析:由AC是⊙O的直徑得∠ABC=90°,由∠BAC=30°,AC=2OC=2,得CB=1,AB=
3
;由AP為切線得∠CAP=90°,再由切線長(zhǎng)定理知得△PAB為正三角形,從而求得△ABP的周長(zhǎng).
解答:解:∵AC是⊙O的直徑,
∴∠ABC=90°,∠BAC=30°,CB=1,AB=
3
,
∵AP為切線,
∴∠CAP=90°,∠PAB=60°,
又∵AP=BP,
∴△PAB為正三角形,
∴周長(zhǎng)=3
3

故選A.
點(diǎn)評(píng):本題考查了圓的切線性質(zhì)、切線長(zhǎng)定理、直角三角形的性質(zhì)等知識(shí).屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是一個(gè)直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.
(1)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1;
(2)求二面角B-AC-A1的大;
(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖,ABCD是正方形,E、F分別是AD、Bc邊上的點(diǎn),EF∥AB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A—EF—D后,求證:不論EF怎樣移動(dòng),∠AOC是定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

如圖,ABCD是正方形,E、F分別是AD、Bc邊上的點(diǎn),EF∥AB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A—EF—D后,求證:不論EF怎樣移動(dòng),∠AOC是定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是正方形,EF分別是AD、BC邊上的點(diǎn),EFAB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A-EF-D后,求證:不論EF怎樣移動(dòng),∠AOC是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實(shí)數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點(diǎn),CD過(guò)點(diǎn)E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案