【題目】某船舶制造廠根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)船舶艘,其總成本為(千萬(wàn)元),其中固定成本為2.8千萬(wàn)元,并且每生產(chǎn)1艘的生產(chǎn)成本為1千萬(wàn)元(總成本=固定成本+生產(chǎn)成本).銷(xiāo)售收入(千萬(wàn)元)滿足:,假定該船舶制造廠產(chǎn)銷(xiāo)平衡(即生產(chǎn)的船舶都能賣(mài)掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:

1)寫(xiě)出利潤(rùn)函數(shù)的解析式(利潤(rùn)=銷(xiāo)售收入-總成本);

2)該廠生產(chǎn)多少艘船舶時(shí),可使盈利最多?

【答案】12)該廠生產(chǎn)4艘船舶時(shí),可使盈利最多

【解析】

1)總成本,根據(jù)利潤(rùn)=銷(xiāo)售收入-總成本, 直接求的解析式;(2)根據(jù)(1)的解析式,求分段函數(shù)的最值.

1)由題意得

2)當(dāng)時(shí),

所以時(shí),有最大值為(千萬(wàn))

當(dāng),函數(shù)是單調(diào)遞減

所以(千萬(wàn))(千萬(wàn))

答:該廠生產(chǎn)4艘船舶時(shí),可使盈利最多

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

Ⅱ)當(dāng)時(shí),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在中,點(diǎn)在直線上,若的面積為10,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若的一個(gè)極值點(diǎn),求的最大值;

(2)若, ,都有 ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知橢圓C:的左右焦點(diǎn)分別為F1,F(xiàn)2,直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).

(1)若直線l過(guò)點(diǎn)F1,且|AB|=,求k的值;

(2)若以AB為直徑的圓過(guò)原點(diǎn)O,試探究點(diǎn)O到直線AB的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體中,E是棱的中點(diǎn),F是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面,給出下列命題:

點(diǎn)F的軌跡是一條線段;不可能平行;BE是異面直線;平面不可能與平面平行.

其中正確的個(gè)數(shù)是  

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.

(1)求的通項(xiàng)公式;

(2)求Sn,并判斷Sn+1Sn,Sn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

Ⅰ)設(shè),求函數(shù)的單調(diào)區(qū)間;

Ⅱ)若,函數(shù),試判斷是否存在,使得為函數(shù)的極小值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,AE垂直于平面,,,點(diǎn)F為平面ABC內(nèi)一點(diǎn),記直線EF與平面BCE所成角為,直線EF與平面ABC所成角為

求證:平面ACE;

,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案