定義域為R的函數(shù)f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若關于x的方程f2(x)+bf(x)+c=0恰有5個不同的實數(shù)解x1,x2,x3,x4,x5,則x1+x2+x3+x4+x5=(  )
分析:先根據(jù)一元二次方程根的情況可判斷f(2)一定是一個解,再假設f(x)的一解為A可得到x1+x2=4,同理可得到x3+x4=4,進而可得到x1+x2+x3+x4+x5=10,即可得到最后答案.
解答:解:對于f2(x)+bf(x)+c=0來說,f(x)最多只有2解,又f(x)=
1
|x-2|
(x≠2),當x不等于2時,x最多四解.
而題目要求5解,即可推斷f(2)為一解,
假設f(x)的另一個解為A,得f(x)=
1
|x-2|
=A;
根據(jù)函數(shù)y═
1
|x-2|
的對稱性得出:x1=2+A,x2=2-A,x1+x2=4;
同理:x3+x4=4;
所以:x1+x2+x3+x4+x5=4+4+2=10;
故選B.
點評:本題主要考查一元二次方程根的情況和含有絕對值的函數(shù)的解法,考查基礎知識的綜合運用能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函數(shù)
(1)a+b=
3
3
;
(2)若函數(shù)g(x)=f(
2x+1
)+f(k-x)
有兩個零點,則k的取值范圍是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+b2x+1+a
是奇函數(shù).
(1)求f(x)的解析式;
(2)用定義證明f(x)為R上的減函數(shù);
(3)若對任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+12x+1+a
是奇函數(shù),則a=
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù).
(Ⅰ)求實數(shù)a值;
(Ⅱ)判斷并證明該函數(shù)在定義域R上的單調性.

查看答案和解析>>

同步練習冊答案