20.設A、B分別為橢圓(a,b>0)的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線。

(Ⅰ)求橢圓的方程;

(Ⅱ)設P為右準線上不同于點(4,0)的任意一點,若直線AP、BP分別與橢圓相交于異于A、B的點M、N,證明點B在以MN為直徑的圓內(nèi)。

(此題不要求畫圖)

20.本小題主要考查直線、圓和橢圓等平面解析幾何的基礎知識,考查綜合運用數(shù)學知識進行推理運算的能力和解決問題的能力。

解:(Ⅰ)依題意得解得從而b=。

故橢圓方程為

(Ⅱ)解法1:由(Ⅰ)得A(-2,0)B(2,0)。設M(

∵M點在橢圓上,∴                 ①

 又M點異于項點A,B,∴

由P、A、M三點共線可得P(4,),

從而

().        ②

將①式代入②式簡化得  

∵2-x0>0,∴>0,于是∠MBP為銳角,從而∠MBN為鈍角,故點B在以MN為直徑的圓內(nèi)。

解法2:由(Ⅰ)得A(-2,0),B(2,0),設則直線AP的方程為直線BP的方程為

∵點M、N分別在直線AP、BP上,

從而         ③

聯(lián)立消去y得(27+

是方程的兩根,∴(-2)·    ①

于是由③,④式代入⑤式化簡可得

∵N點在橢圓上,且異于頂點A、B,∴

又∵>0,從而<0,故∠MBN為鈍角,即點B在以MN為直徑的圓內(nèi)。

解法3:由(Ⅰ)得又MN的中點Q的坐標為(


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設A,B分別為橢圓
x2
a2
+
y2
b2
=1(a,b>0)
的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為右準線上不同于點(4,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(此題不要求在答題卡上畫圖)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A,B分別為橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的左、右頂點,橢圓的長軸長為4,且點(1,
3
2
)
在該橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為直線x=4上不同于點(4,0)的任意一點,若直線AP與橢圓相交于異于A的點M,證明:△MBP為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A,B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP于橢圓相交于兩點B,N,求證:∠NAP為銳角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•孝感模擬)設A,B分別為橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的左、右頂點,橢圓長半軸的長等于焦距,且x=為它的右準線.
(1)求橢圓的方程;
(2)設P為橢圓上不同于A,的一個動點,直線PA,P與橢圓右準線相交于M,兩點,證明:MN為直徑的圓必過橢圓外的一個定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A,B分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,C,D分別為橢圓上、下頂點,橢圓長半軸的長等于焦距,且四邊形ACBD 的面積為4
3

(1)求橢圓的方程;
(2)設Q為橢圓上異于A、B的點,求證:直線QA與直線QB的斜率之積為定值;
(3)設P為直線x=
a2
c
 .(a2=b2+c2)
上不同于點(
a2
c
,0)的任意一點,若直線AP,BP分別與橢圓相交于異于A,B的點M、N,證明:點B在以MN為直徑的圓內(nèi).

查看答案和解析>>

同步練習冊答案