已知數(shù)列{xn}的各項為不等于1的正數(shù),其前n項和為Sn,點Pn的坐標為(xn,Sn),若所有這樣的點Pn (n=1,2,…)都在斜率為k的同一直線(常數(shù)k≠0,1)上.

   (Ⅰ)求證:數(shù)列{xn}是等比數(shù)列;

   (Ⅱ)設滿足

 

ys=,yt=s,t∈N,且s≠t)共中a為常數(shù),且1<a<,試判斷,是否存在自然

數(shù)M,使當n>M時,xn>1恒成立?若存在,求出相應的M;若不存在,請說明理由

(Ⅱ)答案是肯定的,即存在自然數(shù)M,使當n>M時,xn>1恒成立


解析:

(1)∵點,都在斜率為k的直線上

=k,即=k,………………………………………(1分)

故  (k-1)xn+1=kxn

∵k≠0,xn+1≠1,xn≠1,………………………………………(3分)

==常數(shù),∴{xn}是公比為的等比數(shù)列!(4分)

  

(2)答案是肯定的,即存在自然數(shù)M,使當n>M時,xn>1恒成立!(5分)

事實上,由1<a<,得0<2a2-3a+1<1 …………………………………(6分)

yn=log (2a2-3a+1),

= logxn ………………………………………(8分)

由(1)得{xn}是等比數(shù)列,設公比為q>0首項為x1,則xn=x1·qn1(n∈N)

=(n-1) logq+logx1

令d=logq,故得{}是以d為公差的等差數(shù)列。

又∵=2t+1, =2s+1,

=2(ts)

即(s-1)d-(t-1)d=2(ts),

d=-2………………………………………(10分)

=+(n-s)(-2)=2(t+s)-2n+1(n∈N)

又∵xn=(2a23a+1)  (n∈N

∴要使xn>1恒成立,即須<0………………………………………(12分)

∴2(t+s)-2n+1<0,∴n>(t+s)+,當M=t+s,n>M時,我們有<0恒成立,

∴當n>M=(t+s)時,>1恒成立。(∵0<2a2-3a+1<1)……(14分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足數(shù)學公式(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

同步練習冊答案