【題目】已知拋物線的焦點為為上位于第一象限的任意一點,過點的直線交于另一點,交軸的正半軸于點.
(1)若當點的橫坐標為,且為等腰三角形,求的方程;
(2)對于(1)中求出的拋物線,若點,記點關(guān)于軸的對稱點為交軸于點,且,求證:點的坐標為,并求點到直線的距離的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣lnx﹣1,g(x)=k(f(x)﹣x)+ ,(k∈R).
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當1<k<3,x∈(1,e)時,求證:g(x)>﹣ (1+ln3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的左焦點與拋物線的焦點重合,直線與以原點為圓心,以橢圓的離心率為半徑的圓相切.
(Ⅰ)求該橢圓的方程;
(Ⅱ)設(shè)點坐標為,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 表示焦點在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無實根,
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=ax2+bx(a<0)通過點(1,2),且其圖象與y=﹣x2+2x的圖象有二個交點(如圖所示).
(1)求y=ax2+bx與y=﹣x2+2x所圍成的面積S與a的函數(shù)關(guān)系;
(2)當a,b為何值時,S取得最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,恒有成立,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個相異極值點, ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大值;
(2)若是函數(shù)圖像上不同的三點,且,試判斷與之間的大小關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在定義域[﹣1,1]是奇函數(shù),當x∈[﹣1,0]時,f(x)=﹣3x2 .
(1)當x∈[0,1],求f(x);
(2)對任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式(x+2)(x﹣1)>0的解集為( )
A.{x|x<﹣2或x>1}
B.{x|﹣2<x<1}
C.{x|x<﹣1或x>2}
D.{x|﹣1<x<2}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com