已知在等差數(shù)列{an}中,a2=11,a5=5.
(1)求通項(xiàng)公式an;     
(2)求前n項(xiàng)和Sn的最大值.
分析:(1)設(shè)等差數(shù)列{an}的公差為d,可得 
a1+d=11
a1+4d=5
,解之代入通項(xiàng)公式可得;(2)由(1)可得Sn=-(n-7)2+49,由二次函數(shù)的最值可得.
解答:解:(1)設(shè)等差數(shù)列{an}的公差為d,
則 
a1+d=11
a1+4d=5
,解得
a1=13
d=-2

∴an=13+(n-1)(-2)=-2n+15
(2)由(1)可得Sn=13n+
n(n-1)
2
(-2)

=-n2+14n=-(n-7)2+49
當(dāng)n=7時(shí),Sn有最大值,為S7=49
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)公式和求和公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等差數(shù)列{an}中,a1=120,d=-4,若Sn≤an(n≥2),則n的最小值為( 。
A、60B、62C、70D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個(gè)根,那么使得前n項(xiàng)和Sn為負(fù)值的最大的n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等差數(shù)列{an}中,若a2與2的等差中項(xiàng)等于S2與2的等比中項(xiàng),且S3=18.
求:
(1)求此數(shù)列的通項(xiàng)公式;
(2)求該數(shù)列的第10項(xiàng)到第20項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等差數(shù)列{an}中3a2=7a7,a1>0,則下列說(shuō)法正確的是( 。
A、a11>0B、S10為Sn的最大值C、d>0D、S4>S16

查看答案和解析>>

同步練習(xí)冊(cè)答案