已知中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的兩個短軸端點(diǎn)和左右焦點(diǎn)所組成的四邊形是面積為2的正方形,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(0,2)的直線l與橢圓交于點(diǎn)A,B,當(dāng)△OAB面積最大時,求直線l的方程.

【答案】分析:(1)設(shè)橢圓方程為,由已知得出關(guān)于a,b的方程組,解之即得a,b的值,從而寫出所求橢圓的標(biāo)準(zhǔn)方程即可;
(2)根據(jù)題意可知直線l的斜率存在,故設(shè)直線l的方程為y=kx+2,A(x1,y1),B(x2,y2),將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用弦長公式即可求得k值,從而解決問題.
解答:解:設(shè)橢圓方程為,
(1)由已知得
∴所求橢圓的標(biāo)準(zhǔn)方程為
(2)根據(jù)題意可知直線l的斜率存在,故設(shè)直線l的方程為y=kx+2,A(x1,y1),B(x2,y2
由方程組消去y得關(guān)于x得:方程(1+2k2)x2+8kx+6=0,
由直線l與橢圓相交于A,B兩點(diǎn),
則有△>0⇒64k2-24(1+2k2)=16k2-24>0,解得
由韋達(dá)定理得:

=
又因?yàn)樵c(diǎn)O到直線l的距離,

(m>0),則2k2=m2+3,所以S=
當(dāng)且僅當(dāng)m=2時,,此時,滿足題意,
∴直線l的方程為,或
點(diǎn)評:本題考查用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,當(dāng)直線與圓錐曲線相交時   涉及弦長問題,常用“韋達(dá)定理法”設(shè)而不求計算弦長(即應(yīng)用弦長公式);涉及弦長的中點(diǎn)問題,常用“點(diǎn)差法”設(shè)而不求,將弦所在直線的斜率、弦的中點(diǎn)坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化   同時還應(yīng)充分挖掘題目的隱含條件,尋找量與量間的關(guān)系靈活轉(zhuǎn)化,往往就能事半功倍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的兩個短軸端點(diǎn)和左右焦點(diǎn)所組成的四邊形是面積為2的正方形,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(0,2)的直線l與橢圓交于點(diǎn)A,B,當(dāng)△OAB面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點(diǎn)M=(2,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l平行于OM,且與橢圓交于A、B兩個不同點(diǎn).
(。┤簟螦OB為鈍角,求直線l在y軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省高三熱身卷數(shù)學(xué)(理)試題 題型:解答題

(本題12分)已知中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的兩個短軸端點(diǎn)和左右焦點(diǎn)所組成的四邊形是面積為2的正方形,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)P(0,2)的直線l與橢圓交于點(diǎn)A,B,當(dāng)△OAB面積最大時,求直線l的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省宜春市上高二中高三數(shù)學(xué)熱身試卷(理科)(解析版) 題型:解答題

已知中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的兩個短軸端點(diǎn)和左右焦點(diǎn)所組成的四邊形是面積為2的正方形,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(0,2)的直線l與橢圓交于點(diǎn)A,B,當(dāng)△OAB面積最大時,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案