【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如“滴滴打車”“神州專車”等網(wǎng)約車服務(wù)在我國各城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,分別收集和分析了網(wǎng)約車的,兩項(xiàng)指標(biāo)數(shù),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo)數(shù) | 2 | 4 | 5 | 6 | 8 |
指標(biāo)數(shù) | 3 | 4 | 4 | 4 | 5 |
經(jīng)計(jì)算得:,,.
(1)試求與間的相關(guān)系數(shù),并利用說明與是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)建立關(guān)于的回歸方程,并預(yù)測(cè)當(dāng)指標(biāo)數(shù)為7時(shí),指標(biāo)數(shù)的估計(jì)值;
(3)若城市的網(wǎng)約車指標(biāo)數(shù)落在區(qū)間之外,則認(rèn)為該城市網(wǎng)約車數(shù)量過多,會(huì)對(duì)城市交通管理帶來較大的影響,交通管理部門將介入進(jìn)行治理,直至指標(biāo)數(shù)回落到區(qū)間之內(nèi).現(xiàn)已知2018年11月該城市網(wǎng)約車的指標(biāo)數(shù)為13,問:該城市的交通管理部門是否要介入進(jìn)行治理?試說明理由.
附:相關(guān)公式:,,.
參考數(shù)據(jù):,.
【答案】(1),與具有較強(qiáng)的線性相關(guān)關(guān)系,可用線性回歸模型擬合與的關(guān)系;(2),當(dāng)時(shí),;(3)要介入進(jìn)行治理.
【解析】
(1)由已知數(shù)據(jù)可得,利用公式,求得相關(guān)系數(shù),即可作出判斷,得到結(jié)論;
(2)由(1),求得和,求得回歸直線的方程,代入,即可求得回歸方程;
(3)由,而,即可得到結(jié)論.
(1)由已知數(shù)據(jù)可得,.所以相關(guān)系數(shù) .
因?yàn)?/span>,所以與具有較強(qiáng)的線性相關(guān)關(guān)系,可用線性回歸模型擬合與的關(guān)系.
(2)由(1)可知,,
所以與之間線性回歸方程為.
當(dāng)時(shí),.
(3),而,故2018年11月該城市的網(wǎng)約車已對(duì)城市交通帶來較大的影響,交通管理部門將介入進(jìn)行治理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形理論是當(dāng)今世界十分風(fēng)靡和活躍的新理論、新學(xué)科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現(xiàn)象,圖象或者物理過程。標(biāo)準(zhǔn)的自相似分形是數(shù)學(xué)上的抽象,迭代生成無限精細(xì)的結(jié)構(gòu)。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出的,按照如下規(guī)律依次在一個(gè)黑色三角形內(nèi)去掉小三角形則當(dāng)時(shí),該黑色三角形內(nèi)共去掉( )個(gè)小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)若無零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若有兩個(gè)相異零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),函數(shù).
(1)討論在區(qū)間上的單調(diào)性;
(2)若存在兩個(gè)極值點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,試討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)在(2)的條件下,若有兩個(gè)零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長;
(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著食品安全問題逐漸引起人們的重視,有機(jī)、健康的高端綠色蔬菜越來越受到消費(fèi)者的歡迎,同時(shí)生產(chǎn)—運(yùn)輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題.
(1)在有機(jī)蔬菜的種植過程中,有機(jī)肥料使用是必不可少的.根據(jù)統(tǒng)計(jì)某種有機(jī)蔬菜的產(chǎn)量與有機(jī)肥料的用量有關(guān)系,每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)如下表
使用堆漚肥料(千克) | 2 | 4 | 5 | 6 | 8 |
產(chǎn)量的增加量(百斤) | 3 | 4 | 4 | 4 | 5 |
依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)有機(jī)蔬菜大棚使用堆漚肥料10千克,則每個(gè)有機(jī)蔬菜大棚產(chǎn)量增加量是多少百斤?
(2)某大棚蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價(jià)格賣給顧客,如果當(dāng)天前8小時(shí)賣不完,則超市通過促銷以每份5元的價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且);
前8小時(shí)內(nèi)的銷售量(單位:份) | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數(shù) | 10 | x | 16 | 6 | 15 | 13 | y |
若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤的期望值為決策依據(jù),當(dāng)購進(jìn)17份比購進(jìn)18份的利潤的期望值大時(shí),求的取值范圍.
附:回歸直線方程為,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù);
(2)若,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.
為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:.
(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;
(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com