已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關于直線x-y-1=0對稱,則圓C2的方程為


  1. A.
    (x+2)2+(y-2)2=1
  2. B.
    (x-2)2+(y+2)2=1
  3. C.
    (x+2)2+(y+2)2=1
  4. D.
    (x-2)2+(y-2)2=1
B
分析:求出圓C1:(x+1)2+(y-1)2=1的圓心坐標,關于直線x-y-1=0對稱的圓心坐標求出,即可得到圓C2的方程.
解答:圓C1:(x+1)2+(y-1)2=1的圓心坐標(-1,1),關于直線x-y-1=0對稱的圓心坐標為(2,-2)
所求的圓C2的方程為:(x-2)2+(y+2)2=1
故選B
點評:本題是基礎題,考查點關于直線對稱的圓的方程的求法,考查計算能力,注意對稱點的坐標的求法是本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5、已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關于直線x-y-1=0對稱,則圓C2的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓c1:(x+1)2+y2=8,點c2(1,0),點Q在圓C1上運動,QC2的垂直一部分線交QC1于點P.
(I)求動點P的軌跡W的方程;
(II)過點S(0,-
13
)且斜率為k的動直線l交曲線W于A、B兩點,在y軸上是否存在定點D,使以AB為直徑的圓恒過這個點?若存在,求出D的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:(x+1)2+y2=8,點C2(1,0),點Q在圓C1上運動,QC2的垂直平分線交QC1于點P.
(Ⅰ) 求動點P的軌跡W的方程;
(Ⅱ) 設M,N是曲線W上的兩個不同點,且點M在第一象限,點N在第三象限,若
OM
+2
ON
=2
OC1
,O為坐標原點,求直線MN的斜率k;
(Ⅲ)過點S(0,-
1
3
)
且斜率為k的動直線l交曲線W于A,B兩點,在y軸上是否存在定點D,使以AB為直徑的圓恒過這個點?若存在,求出D的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:(x-1)2+y2=1;圓C2:x2+(y+2)2=1,則圓C1與C2的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關于直線x-y-2=0對稱;
(1)求圓C2的方程,
(2)過點(2,0)作圓C2的切線l,求直線l的方程.

查看答案和解析>>

同步練習冊答案