【題目】籃球場(chǎng)上有5個(gè)人在練球,其戰(zhàn)術(shù)是由甲開(kāi)始發(fā)球(第1次傳球),經(jīng)過(guò)6次傳球跑動(dòng)后(中途每人的傳接球機(jī)會(huì)均等),回到甲,由甲投3分球,其不同的傳球方式有( )種.

A. 4 100 B. 1 024 C. 976 D. 820

【答案】D

【解析】

將球的位置對(duì)應(yīng)為點(diǎn),,,,兩個(gè)位置之間有傳球關(guān)系就在對(duì)應(yīng)的兩點(diǎn)間連一條直線.因?yàn)樽詈蠓祷氐郊,所以,傳球關(guān)系就對(duì)應(yīng)為六邊形(如圖).

5個(gè)人對(duì)應(yīng)為5種顏色,球的第次傳出到位置在誰(shuí)手里,就在處染上該人所代表的顏色.這樣,問(wèn)題便轉(zhuǎn)化為:

5種顏色給六邊形的頂點(diǎn)染色,要求每點(diǎn)只染一種顏色,相鄰的點(diǎn)染不同的顏色.如果限定只染甲色,則一共有多少種不同的染法?

更一般地,考慮種顏色染邊形的染法數(shù),有.

對(duì),如圖,1種染法,種染法,都有種染法,對(duì),若只考慮與不同色,也有種染法,相乘得.但在這個(gè)計(jì)算中包含著兩種情況,其一是異色,這符合條件,有種染法;其二是同色,這不符合條件,需要排除,可把合并,看成一點(diǎn),有種染法.

于是,.

變形并遞推

.

.

,,得. 選D.

評(píng)析:可以用分類(lèi)計(jì)數(shù)的方法直接求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:實(shí)數(shù)滿足,:實(shí)數(shù)滿足

(1)若為真命題,求實(shí)數(shù)的取值范圍.

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)有獎(jiǎng)銷(xiāo)售中,購(gòu)滿100元商品得1張獎(jiǎng)券,多購(gòu)多得,100張獎(jiǎng)券為一個(gè)開(kāi)獎(jiǎng)單位,每個(gè)開(kāi)獎(jiǎng)單位設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè),設(shè)一張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為AB,C,可知其概率平分別為

1)求1張獎(jiǎng)券中獎(jiǎng)的概率;

2)求1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,其關(guān)系如圖1;投資股票等風(fēng)險(xiǎn)型產(chǎn)品的年收益與投資額的算術(shù)平方根成正比,其關(guān)系如圖2.

1)分別寫(xiě)出兩種產(chǎn)品的年收益的函數(shù)關(guān)系式;

2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬(wàn)元.該建筑物每年的能源消耗費(fèi)用(單位:萬(wàn)元)與隔熱層厚度(單位:厘米)滿足關(guān)系:.若不建隔熱層,每年的能源消耗費(fèi)用為萬(wàn)元.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

1)求的值及的表達(dá)式;

2)隔熱層修建多厚時(shí),總費(fèi)用最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定二次函數(shù).

(1)證明:方程的根也一定是方程的根;

(2)找出方程4個(gè)不等實(shí)根的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y2=4x的焦點(diǎn)為F,拋物線上有三個(gè)動(dòng)點(diǎn)A,B,C.

1)若,求;

2)若,AB的垂直平分線經(jīng)過(guò)一個(gè)定點(diǎn)Q,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的有_______.(寫(xiě)出所有正確說(shuō)法的序號(hào))

①在中,若,則;

②在中,若,則是銳角三角形;

③在中,若,則;

④若是等差數(shù)列,其前項(xiàng)和為,則三點(diǎn)共線;

⑤等比數(shù)列的前項(xiàng)和為,若對(duì)任意的,點(diǎn)均在函數(shù)(,均為常數(shù))的圖象上,則的值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為改善居民的生活環(huán)境,政府?dāng)M將一公園進(jìn)行改造擴(kuò)建.已知原公園是直徑為200 m的半圓形,出入口在圓心O處,A為居民小區(qū),OA的距離為200 m,按照設(shè)計(jì)要求,以居民小區(qū)A和圓弧上點(diǎn)B的連線為一條邊向半圓外作等腰直角三角形ABCC為直角頂點(diǎn)),使改造后的公園如圖中四邊形OACB所示.

1)若,則C與出入口O之間的距離為多少米?

2的大小為多少時(shí),公園OACB的面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案