(本題滿分15分)已知A(1,1)是橢圓)上一點(diǎn),F1­,F(xiàn)2
 
是橢圓上的兩焦點(diǎn),且滿足 .
(I)求橢圓方程;
(Ⅱ)設(shè)C,D是橢圓上任兩點(diǎn),且直線AC,AD的斜率分別為  ,若存在常數(shù) 使/,求直線CD的斜率.

(1) 所求橢圓方程 !7分
(2)設(shè)直線AC的方程: ,由, 得
點(diǎn)C,
同理 
 
 
要使 為常數(shù),  +(1-C)=0,
得C=1,                             ………15分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在圓上任取一點(diǎn),過(guò)點(diǎn)軸的垂線段,為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點(diǎn),為曲線上一動(dòng)點(diǎn),求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知橢的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切。
、求橢圓的方程;
、過(guò)點(diǎn)的直線(斜率存在時(shí))與橢圓交于、兩點(diǎn),設(shè)為橢圓軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知離心率為的橢圓上的點(diǎn)到
左焦點(diǎn)的最長(zhǎng)距離為
(1)求橢圓的方程;
(2)如圖,過(guò)橢圓的左焦點(diǎn)任作一條與兩坐標(biāo)軸都不垂直的弦,若點(diǎn)軸上,且使得的一條內(nèi)角平分線,則稱點(diǎn)為該橢圓的“左特征點(diǎn)”,求橢圓的“左特征點(diǎn)”的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

極坐標(biāo)系中,以(9,)為圓心,9為半徑的圓的極坐標(biāo)方程為(    )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在極坐標(biāo)系中,過(guò)點(diǎn)且垂直于極軸的直線方程為(  )
A. .   B    C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,曲線是以原點(diǎn)O為中心、為焦點(diǎn)的橢圓的一部分,曲線是以O(shè)為頂點(diǎn)、為焦點(diǎn)的拋物線的一部分,A是曲線的交點(diǎn)
為鈍角.

(1)求曲線的方程;
(2)過(guò)作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問(wèn)是否為定值?若是求出定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn).求證:(1)x1x2為定值;(2)為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案