已知橢圓:()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和為,設(shè)點(diǎn)的軌跡為曲線.
(1)寫(xiě)出的方程;
(2)設(shè)過(guò)點(diǎn)的斜率為()的直線與曲線交于不同的兩點(diǎn),,點(diǎn)在軸上,且,求點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線及點(diǎn),直線斜率為1且不過(guò)點(diǎn),與拋物線交于點(diǎn)A,B,
(1) 求直線在軸上截距的取值范圍;
(2) 若AP,BP分別與拋物線交于另一點(diǎn)C、D,證明:AD,BC交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知與拋物線交于A、B兩點(diǎn),
(1)若|AB|="10," 求實(shí)數(shù)的值。
(2)若, 求實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定直線動(dòng)圓M與定圓外切且與直線相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)A、B是曲線C上兩動(dòng)點(diǎn)(異于坐標(biāo)原點(diǎn)O),若求證直線AB過(guò)一定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓:的離心率為,點(diǎn)、,原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)是橢圓C上一點(diǎn),的周長(zhǎng)為16,設(shè)線段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線段MN長(zhǎng)度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),判斷直線與圓O的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題P:“若直線過(guò)定點(diǎn),則”,請(qǐng)判斷命題P的真假,并證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,線段的兩個(gè)端點(diǎn)、分別分別在軸、軸上滑動(dòng),,點(diǎn)是上一點(diǎn),且,點(diǎn)隨線段的運(yùn)動(dòng)而變化.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)為點(diǎn)的軌跡的左焦點(diǎn),為右焦點(diǎn),過(guò)的直線交的軌跡于兩點(diǎn),求的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com