13.在(1+x)+(1+x2+…+(1+x6的展開(kāi)式中,x 2項(xiàng)的系數(shù)是    .(用數(shù)字作答)

13.35

解析:依題意可知含x2項(xiàng)的系數(shù)為C+C+C+…+C.

化簡(jiǎn)上式=C+C+C+…+C

=C+C+…+C=C==35.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),在使f(x)≥M成立的所有常數(shù)M中,我們把M中的最大值稱(chēng)為函數(shù)f(x)的“下確界”,則函數(shù)f(x)=
x2+1
(x+1)2
的下確界為( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省宜春市高安中學(xué)2012屆高三第一次段考數(shù)學(xué)理科試題 題型:022

設(shè)奇函數(shù)f(x)在[-1,1]上是增函數(shù),且f(-1)=-1,若函數(shù)f(x)≤t2-2at+1對(duì)所有的a∈[-1,1],x∈[-1,1]都成立,則t的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、數(shù)學(xué)(江蘇卷) 題型:044

設(shè)f(x)使定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為.如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得(x)=h(x)(x2-ax+1),則稱(chēng)函數(shù)f(x)具有性質(zhì)P(a).

(1)設(shè)函數(shù)f(x)=h(x)+(x>1),其中b為實(shí)數(shù)

①求證:函數(shù)f(x)具有性質(zhì)P(b)

②求函數(shù)f(x)的單調(diào)區(qū)間

(2)已知函數(shù)g(x)具有性質(zhì)P(2),給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若函數(shù)f(x)在[a,b]上是減函數(shù),f-1(x)是其反函數(shù),且方程f(x)=0有解,則


  1. A.
    f-1(x)=0有解,且a≤f-1(x)≤b
  2. B.
    f-1(0)有意義,且a≤f-1(0)≤b
  3. C.
    f-1(x)=0有解,b≤f-1(x)≤a
  4. D.
    f-1(0)有意義,且b≤f-1(0)≤a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)在(-1,1)上有定義,當(dāng)0<x<1時(shí),f(x)<0,且對(duì)任意x,y∈(-1,1)都有f(x)+f(y)=f(數(shù)學(xué)公式),試證明:
(1)f(x)為奇函數(shù);
(2)f(x)在(-1,1)上單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊(cè)答案