正方形ABCD的邊長是2,E、F分別是AB和CD的中點(diǎn),將正方形沿EF折成直二面角(如圖所示).M為矩形AEFD內(nèi)一點(diǎn),如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為,那么點(diǎn)M到直線EF的距離為(    )

A.                 B.1                C.                D.

解析:作MG⊥EF,

∵平面AEF⊥平面EBCF,∴MG⊥平面EBCF.∴∠MBG是MB和平面BCF所成的角.

    作GH⊥BC,則MH⊥BH.

∵∠MBH=∠MBE,

∴Rt△MEB≌Rt△MHB.

∴ME=MC.∴EG=GH,

    即G為EF的中點(diǎn).

    又=,

∴MG=BG==.

答案:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,E為CD的中點(diǎn),則
AE
BD
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長為1,正方形ADEF所在平面與平面ABCD互相垂直,G,H是DF,F(xiàn)C的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE;
(3)求三棱錐G-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長為4,中心為M,球O與正方形ABCD所在的平面相切于M點(diǎn),過點(diǎn)M的球的直徑另一端點(diǎn)為N,線段NA與球O的球面的交點(diǎn)為E,且E恰為線段NA的中點(diǎn),則球O的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O.將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)已知中心為O的正方形ABCD的邊長為2,點(diǎn)M,N分別為線段BC,CD上的兩個不同點(diǎn),且|
MN
|=1,則
OM
ON
的取值范圍是
[2-
2
,1]
[2-
2
,1]

查看答案和解析>>

同步練習(xí)冊答案