【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知,對(duì)任意nN*,都有2Sn=(n+1an

1)求數(shù)列{an}的通項(xiàng)公式;

2)若數(shù)列的前項(xiàng)和為Tn,求Tn的取值范圍.

【答案】1an=2n2

【解析】

1)在2Sn=(n+1an中,將可得:2Sn1=(n+11an1,兩式作差可得:,對(duì)賦值,再利用累乘法計(jì)算可得:,問(wèn)題得解。

2)利用(1)中結(jié)論,整理可得:,利用裂項(xiàng)求和可得:,問(wèn)題得解。

解:(1Sn為數(shù)列{an}的前n項(xiàng)和,已知,對(duì)任意nN*,

都有2Sn=(n+1an.①

當(dāng)n≥2時(shí),2Sn1=(n+11an1.②

①﹣②得:

,

則:,

所以:,

整理得:an=2n(首項(xiàng)符合通項(xiàng)),

故:an=2n

2)由已知條件:,

故:,

當(dāng)時(shí),

故:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)f(x)=mxα的圖象經(jīng)過(guò)點(diǎn)A(2,2).

(1)試比較2ln f(3)與3ln f(2)的大。

(2)定義在R上的函數(shù)g(x)滿(mǎn)足g(-x)=g(x), g(4+x)=g(4-x),且當(dāng)x∈[0,4]時(shí),

. 若關(guān)于x的不等式g 2(x)+ng(x)>0在[-200,200]上有且只有151個(gè)整數(shù)解,求實(shí)數(shù)n的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABBC,BABC,BD是邊AC上的高,沿BDABC折起,當(dāng)三棱錐ABCD的體積最大時(shí),該三棱錐外接球表面積為( 。

A. 12πB. 24πC. 36πD. 48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Cx2+y2+kx+2y+k20,過(guò)點(diǎn)P1,﹣1)可作圓的兩條切線(xiàn),則實(shí)數(shù)k的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】Ⅰ)如表所示是某市最近5年個(gè)人年平均收入表節(jié)選.求y關(guān)于x的回歸直線(xiàn)方程,并估計(jì)第6年該市的個(gè)人年平均收入(保留三位有效數(shù)字).

年份x

1

2

3

4

5

收入y(千元)

21

24

27

29

31

其中, 1:= ,=

Ⅱ)下表是從調(diào)查某行業(yè)個(gè)人平均收入與接受專(zhuān)業(yè)培訓(xùn)時(shí)間關(guān)系得到2×2列聯(lián)表:

受培時(shí)間一年以上

受培時(shí)間不足一年

總計(jì)

收入不低于平均值

60

20

收入低于平均值

10

20

總計(jì)

100

完成上表,并回答:能否在犯錯(cuò)概率不超過(guò)0.05的前提下認(rèn)為收入與接受培訓(xùn)時(shí)間有關(guān)系”.

2:

PK2k0

0.50

0.40

0.10

0.05

0.01

0.005

k0

0.455

0.708

2.706

3.841

6.635

7.879

3:

K2=.(n=a+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有唯一零點(diǎn),則a=

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四張卡片,分別寫(xiě)有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P—ABC中,△PBC為等邊三角形,點(diǎn)O為BC的中點(diǎn),AC⊥PB,平面PBC⊥平面ABC.

(1)求直線(xiàn)PB和平面ABC所成的角的大;

(2)求證:平面PAC⊥平面PBC;

(3)已知E為PO的中點(diǎn),F(xiàn)是AB上的點(diǎn),AF=AB.若EF∥平面PAC,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校進(jìn)行理科、文科數(shù)學(xué)成績(jī)對(duì)比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布表如下.

分組

頻數(shù)

頻率

分組

頻數(shù)

頻率

[135,150]

8

0.08

[135,150]

4

0.04

[120,135)

17

0.17

[120,135)

18

0.18

[105,120)

40

0.4

[105,120)

37

0.37

[90,105)

21

0.21

[90,105)

31

0.31

[75,90)

12

0. 12

[75,90)

7

0.07

[60,75)

2

0.02

[60,75)

3

0.03

總計(jì)

100

1

總計(jì)

100

1

理科 文科

(Ⅰ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表,求文科數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值;(精確到0.01)

(Ⅱ)請(qǐng)?zhí)顚?xiě)下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān):

數(shù)學(xué)成績(jī)120分

數(shù)學(xué)成績(jī)<120分

合計(jì)

理科

文科

合計(jì)

200

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案