【題目】已知函數(shù)與的圖象在它們的交點處具有相同的切線.
(1)求的解析式;
(2)若函數(shù)有兩個極值點,,且,求的取值范圍.
【答案】(1);(2)
【解析】
(1)求得兩個函數(shù)的導數(shù),由公切線的斜率相同可得的方程;將切點代入兩個函數(shù),可得的方程;聯(lián)立兩個方程即可求得的值,進而得的解析式;
(2)將的解析式代入并求得,由極值點定義可知,是方程的兩個不等實根,由韋達定理表示出,結(jié)合可得.代入中化簡,分離參數(shù)并構(gòu)造函數(shù),求得并令求得極值點,由極值點兩側(cè)符號判斷單調(diào)性,并求得最小值,代入端點值求得最大值,即可求得的取值范圍.
(1)根據(jù)題意,函數(shù)與
可知,,
兩圖象在點處有相同的切線,
所以兩個函數(shù)切線的斜率相等,即,化簡得,
將代入兩個函數(shù)可得,
綜合上述兩式可解得,
所以.
(2)函數(shù),定義域為,
,
因為,為函數(shù)的兩個極值點,
所以,是方程的兩個不等實根,
由根與系數(shù)的關(guān)系知,,
又已知,所以,
,
將式代入得
,
令,,
,令,解得,
當時,,在單調(diào)遞減;
當時,,在單調(diào)遞增;
所以,
,
,
即的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,,,給出以下四個命題:(1)是偶函數(shù);(2)是偶函數(shù);(3)的最小值為;(4)有兩個零點;其中真命題的是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點在拋物線上,直線與拋物線C交于A,B兩點,且直線OA,OB的斜率之和為.
(1)求a和k的值;
(2)若,設直線與y軸交于D點,延長MD與拋物線C交于點N,拋物線C在點N處的切線為n,記直線n,與x軸圍成的三角形面積為S.求S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學對參加“社會實踐活動”的全體志愿者進行學分考核,因該批志愿者表現(xiàn)良好,大學決定考核只有合格和優(yōu)秀兩個等次,若某志愿者考核合格,授予個學分;考核優(yōu)秀,授予個學分,假設該大學志愿者甲、乙、丙考核優(yōu)秀的概率為、、.他們考核所得的等次相互獨立.
(1)求在這次考核中,志愿者甲、乙、丙三人中至少一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名志愿者所得學分之和為隨機變量,求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求證:BC⊥PC;
(2)求PB與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中.
(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)若旋轉(zhuǎn)的弧度數(shù)與單位時間內(nèi)煤氣輸出量成正比,那么為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com