已知兩個圓x2+y2=1①,與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得一個更一般的命題,而已知命題應成為所推廣命題的一個特例,推廣的命題為________.

答案:
解析:

  答案:(x-a)2+(y-b)2=r2與(x-c)2+(y-d)2=r2相減得兩圓的對稱軸方程

  解析:已知兩個圓為等圓,可以關于直線對稱,則推廣為兩個任意等圓相減得對稱軸.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:訓練必修二數(shù)學蘇教版 蘇教版 題型:022

已知兩個圓x2+y2=1①與x2+(y-3)2=1②,則由①式減去、谑娇傻蒙鲜鰞蓤A的對稱軸方程,將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為推廣命題的一個特例,推廣的命題為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個圓x2+y2=1①與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程,將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例,推廣的命題為:___________________________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個圓x2+y2=1①,與x2+(y-3)2=1②,則由①式減去②式可得上述兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得一個更一般的命題,而已知命題應成為所推廣命題的一個特例,推廣的命題為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例.推廣命題為______________________.

查看答案和解析>>

同步練習冊答案